LECTURE NOTES

ON

REMOTE SENSING AND GIS

IV B. Tech I semester (JNTUH-R13)

UNIT-1

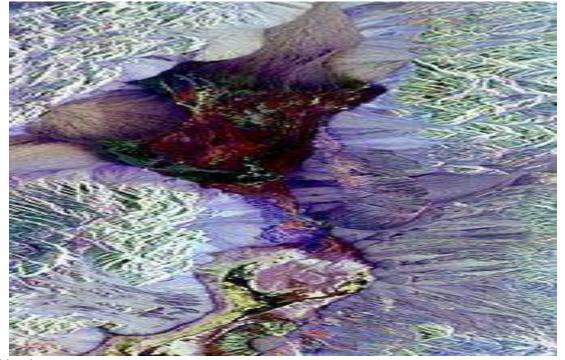
Photogrammetry

Photogrammetry is the science of making measurements from photographs, especially for recovering the exact positions of surface points. Moreover, it may be used to recover the motion pathways of designated reference points located on any moving object, on its components and in the immediately adjacent environment. Photogrammetry may employ high-speed imaging and remote sensing in order to detect, measure and record complex 2-D and 3-D motion fields (see also sonar, radar, lidar etc.). Photogrammetry feeds the measurements from remote sensing and the results of imagery analysis into computational models in an attempt to successively estimate, with increasing accuracy, the actual, 3-D relative motions within the researched field.

low altitude aerial photograph for use in Photogrammetry - Location Three Arch Bay, Laguna Beach CA.

Its applications include satellite tracking of the relative positioning alterations in all Earth environments (e.g. tectonic motions etc.), the research on the swimming of fish, of bird or insect flight, other relative motion processes (International Society for Photogrammetry and Remote Sensing). The quantitative results of photogrammetry are then used to guide and match the results of computational models of the natural systems, thus helping to invalidate or confirm new theories, to design novel vehicles or new methods for predicting or/and controlling the consequences of earthquakes, tsunamis, any other weather types, or used to understand the flow of fluids next to solid structures and many other processes.

Photogrammetry is as old as modern photography, can be dated to the mid-nineteenth century, and its detection component has been emerging from radiolocation, multilateration and radiometry while its 3-D positioning estimative component (based on modeling) employs methods related to triangulation, trilateration and multidimensional scaling.


In the simplest example, the distance between two points that lie on a plane parallel to the photographic image plane can be determined by measuring their distance on the image, if the scale (s) of the image is known. This is done by multiplying the measured distance by 1/s.

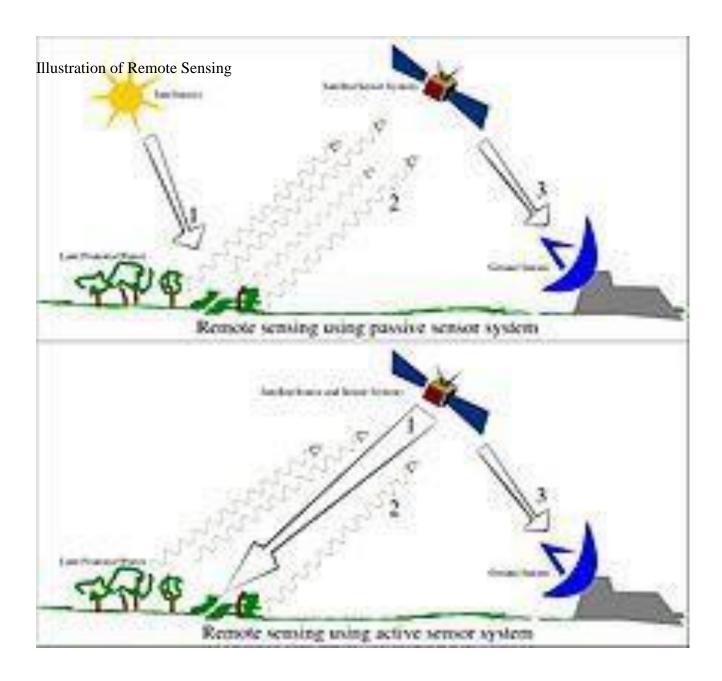
Algorithms for photogrammetry typically attempt to minimize the sum of the squares of errors over the coordinates and relative displacements of the reference points. This minimization is known as bundle adjustment and is often performed using the Levenberg–Marquardt algorithm.

UNIT-2

Remote sensing

For the technique in archaeological surveying, see remote sensing (archaeology). For the claimed psychic ability, see remote viewing. For the electrical measurement technique, see four-terminal sensing.

Synthetic aperture radar image of Death Valley colored using polarimetry.


Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object and thus in contrast to on site observation. Remote sensing is a sub-field of geography. In modern usage, the term generally refers to the use of aerial sensor technologies to detect and classify objects on Earth (both on the surface, and in the atmosphere and oceans) by means of propagated signals (e.g. electromagnetic radiation). It may

be split into active remote sensing (when a signal is first emitted from aircraft or satellites or passive (e.g. sunlight) when information is merely recorded. [4]

Overview

Passive sensors gather radiation that is emitted or reflected by the object or surrounding areas. Reflected sunlight is the most common source of radiation measured by passive sensors. Examples of passive remote sensors include film photography, infrared, charge-coupled devices, and radiometers. Active collection, on the other hand, emits energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. RADAR and LiDAR are examples of active remote sensing where the time delay between emission and return is measured, establishing the location, speed and direction of an object.

Remote sensing makes it possible to collect data of dangerous or inaccessible areas. Remote sensing applications include monitoring deforestation in areas such as the Amazon Basin, glacial features in Arctic and Antarctic regions, and depth sounding of coastal and ocean depths. Military collection during the Cold War made use of stand-off collection of data about dangerous border areas. Remote sensing also replaces costly and slow data collection on the ground, ensuring in the process that areas or objects are not disturbed.

Orbital platforms collect and transmit data from different parts of the electromagnetic spectrum, which in conjunction with larger scale aerial or ground-based sensing and analysis, provides researchers with enough information to monitor trends such as El Niño and other natural long and short term phenomena. Other uses include different areas of the earth sciences such as natural resource management, agricultural fields such as land usage and conservation, and national security and overhead, ground-based and stand-off collection on border areas.

Data acquisition techniques

The basis for multispectral collection and analysis is that of examined areas or objects that reflect or emit radiation that stand out from surrounding areas. For a summary of major remote sensing satellite systems see the overview table.

Applications of remote sensing data

Conventional radar is mostly associated with aerial traffic control, early warning, and certain large scale meteorological data. Doppler radar is used by local law enforcements' monitoring of speed limits and in enhanced meteorological collection such as wind speed and direction within weather systems in addition to precipitation location and intensity. Other types of active collection includes plasmas in the ionosphere. Interferometric synthetic aperture radar is used to produce precise digital elevation models of large scale terrain (See RADARSAT, TerraSAR-X, Magellan).

Laser and radar altimeters on satellites have provided a wide range of data. By measuring the bulges of water caused by gravity, they map features on the seafloor to a

resolution of a mile or so. By measuring the height and wavelength of ocean waves, the altimeters measure wind speeds and direction, and surface ocean currents and directions.

Ultrasound (acoustic) and radar tide gauges measure sea level, tides and wave direction in coastal and offshore tide gauges.

Light detection and ranging (LIDAR) is well known in examples of weapon ranging, laser illuminated homing of projectiles. LIDAR is used to detect and measure the concentration of various chemicals in the atmosphere, while airborne LIDAR can be used to measure heights of objects and features on the ground more accurately than with radar technology. Vegetation remote sensing is a principal application of LIDAR.

Radiometers and photometers are the most common instrument in use, collecting reflected and emitted radiation in a wide range of frequencies. The most common are visible and infrared sensors, followed by microwave, gamma ray and rarely, ultraviolet. They may also be used to detect the emission spectra of various chemicals, providing data on chemical concentrations in the atmosphere.

Stereographic pairs of aerial photographs have often been used to make topographic maps by imagery and terrain analysts in trafficability and highway departments for potential routes, in addition to modelling terrestrial habitat features.

Simultaneous multi-spectral platforms such as Landsat have been in use since the 70's. These thematic mappers take images in multiple wavelengths of electro-magnetic radiation (multi-spectral) and are usually found on Earth observation satellites, including (for example) the Landsat program or the IKONOS satellite. Maps of land cover and land use from thematic mapping can be used to prospect for minerals, detect or monitor land usage, deforestation, and examine the health of indigenous plants and crops, including

entire farming regions or forests. ^[3] Landsat images are used by regulatory agencies such as KYDOW to indicate water quality parameters including Secchi depth, chlorophyll a density and total phosphorus content. Weather satellites are used in meteorology and climatology.

Hyperspectral imaging produces an image where each pixel has full spectral information with imaging narrow spectral bands over a contiguous spectral range. Hyperspectral imagers are used in various applications including mineralogy, biology, defence, and environmental measurements.

Within the scope of the combat against desertification, remote sensing allows to followup and monitor risk areas in the long term, to determine desertification factors, to support decision-makers in defining relevant measures of environmental management, and to assess their impacts.

Geodetic

Overhead geodetic collection was first used in aerial submarine detection and gravitational data used in military maps. This data revealed minute perturbations in the Earth's gravitational field (geodesy) that may be used to determine changes in the mass distribution of the Earth, which in turn may be used for geological studies.

Acoustic and near-acoustic

Sonar: *passive sonar*, listening for the sound made by another object (a vessel, a whale etc.); *active sonar*, emitting pulses of sounds and listening for echoes, used for detecting, ranging and measurements of underwater objects and terrain.

Seismograms taken at different locations can locate and measure earthquakes (after they occur) by comparing the relative intensity and precise timings.

Ultrasound: Ultrasound sensors, that emit high frequency pulses and listening for echoes, used for detecting water waves and water level, as in tide gauges or for towing tanks.

To coordinate a series of large-scale observations, most sensing systems depend on the

following: platform location and the orientation of the sensor. High-end instruments now often use positional information from satellite navigation systems. The rotation and orientation is often provided within a degree or two with electronic compasses. Compasses can measure not just azimuth (i. e. degrees to magnetic north), but also altitude (degrees above the horizon), since the magnetic field curves into the Earth at different angles at different latitudes. More exact orientations require gyroscopic-aided orientation, periodically realigned by different methods including navigation from stars or known benchmarks.

Data processing

Generally speaking, remote sensing works on the principle of the *inverse problem*. While the object or phenomenon of interest (the **state**) may not be directly measured, there exists some other variable that can be detected and measured (the **observation**) which may be related to the

object of interest through a calculation. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emissions may then be related via thermodynamics to the temperature in that region.

The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions.

Spatial resolution

The size of a pixel that is recorded in a raster image – typically pixels may correspond to square areas ranging in side length from 1 to 1,000 metres (3.3 to 3,280.8 ft).

Spectral resolution

The wavelength width of the different frequency bands recorded – usually, this is related to the number of frequency bands recorded by the platform. Current Landsat collection is that of seven bands, including several in the infra-red spectrum, ranging from a spectral resolution of 0.07 to 2.1 μ m. The Hyperion sensor on Earth Observing-1 resolves 220 bands from 0.4 to 2.5 μ m, with a spectral resolution of 0.10 to 0.11 μ m per band.

Radiometric resolution

The number of different intensities of radiation the sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to 16,384 intensities or "shades" of colour, in each band. It also depends on the instrument noise.

Temporal resolution

The frequency of flyovers by the satellite or plane, and is only relevant in time-series studies or those requiring an averaged or mosaic image as in deforesting monitoring. This was first used by the intelligence community where repeated coverage revealed changes in infrastructure, the deployment of units or the modification/introduction of equipment. Cloud cover over a given area or object makes it necessary to repeat the collection of said location.

In order to create sensor-based maps, most remote sensing systems expect to extrapolate sensor data in relation to a reference point including distances between known points on the ground. This depends on the type of sensor used. For example, in conventional photographs, distances are accurate in the center of the image, with the distortion of measurements increasing the farther you get from the center. Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances. The step in which this problem is resolved is called georeferencing, and involves computer-aided matching of points in the image (typically 30 or more points per image) which is extrapolated with the use of an established benchmark, "warping" the image to produce accurate spatial data. As of the early 1990s, most satellite images are sold fully georeferenced.

In addition, images may need to be radiometrically and atmospherically corrected. Radiometric correction

Allows to avoid radiometric errors and distortions. The illumination of objects on the Earth surface is uneven because of different properties of the relief. This factor is taken into account in the method of radiometric distortion correction. [10] Radiometric correction gives a scale to the pixel values, e. g. the monochromatic scale of 0 to 255 will be converted to actual radiance values.

Topographic correction (also called terrain correction)

In rugged mountains, as a result of terrain, the effective illumination of pixels varies considerably. In a remote sensing image, the pixel on the shady slope receives weak illumination and has a low radiance value, in contrast, the pixel on the sunny slope receives strong illumination and has a high radiance value. For the same object, the pixel radiance value on the shady slope will be different from that on the sunny slope. Additionally, different objects may have similar radiance values. These ambiguities seriously affected remote sensing image information extraction accuracy in mountainous areas. It became the main obstacle to further application of remote sensing images. The purpose of topographic correction is to eliminate this effect, recovering the true reflectivity or radiance of objects in horizontal conditions. It is the premise of quantitative remote sensing application.

Atmospheric correction

Elimination of atmospheric haze by rescaling each frequency band so that its minimum value (usually realised in water bodies) corresponds to a pixel value of 0. The digitizing of data also makes it possible to manipulate the data by changing gray-scale values.

Interpretation is the critical process of making sense of the data. The first application was that of aerial photographic collection which used the following process; spatial measurement through the use of a light table in both conventional single or stereographic coverage, added skills such as the use of photogrammetry, the use of photomosaics, repeat coverage, Making use of objects' known dimensions in order to detect modifications. Image Analysis is the recently developed automated computer-aided application which is in increasing use.

Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scale.

Old data from remote sensing is often valuable because it may provide the only long-term data

for a large extent of geography. At the same time, the data is often complex to interpret, and bulky to store. Modern systems tend to store the data digitally, often with lossless compression. The difficulty with this approach is that the data is fragile, the format may be archaic, and the data may be easy to falsify. One of the best systems for archiving data series is as computergenerated machine-readable ultra fiche, usually in type fonts such as OCR-B, or as digitized half-tone images. Ultra fiches survive well in standard libraries, with lifetimes of several centuries. They can be created, copied, filed and retrieved by automated systems. They are about as compact as archival magnetic media, and yet can be read by human beings with minimal, standardized equipment.

Data processing levels

To facilitate the discussion of data processing in practice, several processing "levels" were first defined in 1986 by NASA as part of its Earth Observing System and steadily adopted since then, both internally at NASA (e. g.,) and elsewhere (e. g.,; these definitions are:

Remote sensing software

Main article: Remote sensing application

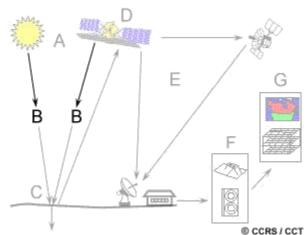
Remote sensing data are processed and analyzed with computer software, known as a remote sensing application. A large number of proprietary and open source applications exist to process remote sensing data. Remote sensing software packages include:

PCI Geomatica made by PCI Geomatics, TacitView from 2d3

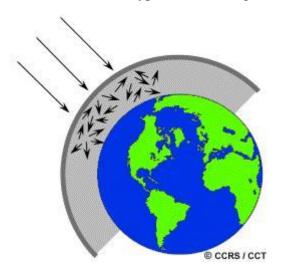
Socet GXP from BAE Systems,
TNTmips from MicroImages, IDRISI
from Clark Labs,

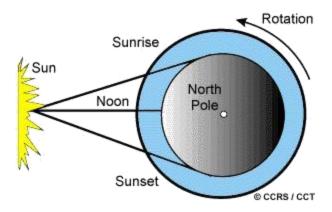
eCognition from Trimble,

and RemoteView made by Overwatch Textron Systems.

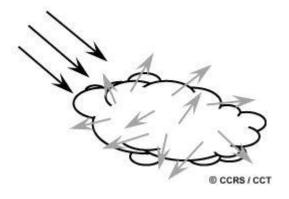

Dragon/ips is one of the oldest remote sensing packages still available, and is in some cases free.

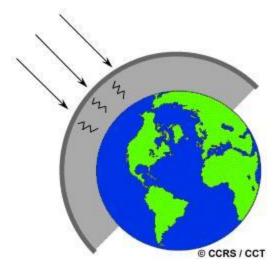
ERDAS IMAGINE from Hexagon Geospatial (Separated from Intergraph SG&I), ENVI/IDL from Exelis Visual Information Solutions,


UNIT-3


Interactions with the Atmosphere

Before radiation used for remote sensing reaches the Earth's surface it has to travel through some distance of the Earth's atmosphere. Particles and gases in the atmosphere can affect the incoming light and radiation. These effects are caused by the mechanisms of scattering and absorption.


Scattering occurs when particles or large gas molecules present in the atmosphere interact with and cause the electromagnetic radiation to be redirected from its original path. How much scattering takes place depends on several factors including the wavelength of the radiation, the abundance of particles or gases, and the distance the radiation travels through the atmosphere. There are three (3) types of scattering which take place.


Rayleigh scattering occurs when particles are very small compared to the wavelength of the radiation. These could be particles such as small specks of dust or nitrogen and oxygen molecules. Rayleigh scattering causes shorter wavelengths of energy to be scattered much more than longer wavelengths. Rayleigh scattering is the dominant scattering mechanism in the upper atmosphere. The fact that the sky appears "blue" during the day is because of this phenomenon. As sunlight passes through the atmosphere, the shorter wavelengths (i.e. blue) of the visible spectrum are scattered more than the other (longer) visible wavelengths. At sunrise and sunset the light has to travel farther through the atmosphere than at midday and the scattering of the shorter wavelengths is more complete; this leaves a greater proportion of the longer wavelengths to penetrate the atmosphere.

Mie scattering occurs when the particles are just about the same size as the wavelength of the radiation. Dust, pollen, smoke and water vapour are common causes of Mie scattering which tends to affect longer wavelengths than those affected by Rayleigh scattering. Mie scattering occurs mostly in the lower portions of the atmosphere where larger particles are more abundant, and dominates when cloud conditions are overcast.

The final scattering mechanism of importance is called nonselective scattering. This occurs when the particles are much larger than the wavelength of

the radiation. Water droplets and large dust particles can cause this type of scattering. Nonselective scattering gets its name from the fact that all wavelengths are scattered about equally. This type of scattering causes fog and clouds to appear white to our eyes because blue, green, and red light are all scattered in approximately equal quantities (blue+green+red light = white light).

Absorption is the other main mechanism at work when electromagnetic radiation interacts with the atmosphere. In contrast to scattering, this phenomenon causes molecules in the atmosphere to absorb energy at various wavelengths. Ozone, carbon dioxide, and water vapour are the three main atmospheric constituents which absorb radiation.

Ozone serves to absorb the harmful (to most living things) ultraviolet radiation from the sun. Without this protective layer in the atmosphere our skin would burn when exposed to sunlight. You may have heard carbon dioxide referred to as a greenhouse gas. This is because it tends to absorb radiation strongly in the far infrared portion of the spectrum - that area associated with thermal heating - which serves to trap this heat inside the atmosphere. Water vapour in the

atmosphere absorbs much of the incoming longwave infrared and shortwave microwave radiation (between 22µm and 1m). The presence of water vapour in the lower atmosphere varies greatly from location to location and at different times of the year. For example, the air mass above a desert would have very little water vapour to absorb energy, while the tropics would have high concentrations of water vapour (i.e. high humidity).

Because these gases absorb electromagnetic energy in very specific regions of the spectrum, they influence where (in the spectrum) we can "look" for remote sensing purposes. Those areas of the spectrum which are not severely influenced by atmospheric absorption and thus, are useful to remote sensors, are called atmospheric windows. By comparing the characteristics of the two most common energy/radiation sources (the sun and the earth) with the atmospheric windows available to us, we can define those wavelengths that we can use most effectively for remote sensing. The visible portion of the spectrum, to which our eyes are most sensitive, corresponds to both an atmospheric window and the peak energy level of the sun. Note also that heat energy emitted by the Earth corresponds to a window around 10 µm in the thermal IR portion of the spectrum, while the large window at wavelengths beyond 1 mm is associated with the microwave region.

Now that we understand how electromagnetic energy makes its journey from its source to the surface (and it is a difficult journey, as you can see) we will next examine what happens to that radiation when it does arrive at the Earth's surface.

Did you know?

"...sorry, no pot of gold at the end of this rainbow..."

...water droplets act as tiny, individual prisms. When sunlight passes through them, the constituent wavelengths are bent in varying amounts according to wavelength. Individual colours in the sunlight are made visible and a rainbow is the result, with shorter wavelengths (violet, blue) in the inner part of the arc, and longer wavelengths (orange, red) along the outer arc.

...if scattering of radiation in the atmosphere did not take place, then shadows would appear as jet black instead of being various degrees of darkness. Scattering causes the atmosphere to have its own brightness (from the light scattered by particles in the path of sunlight) which helps to illuminate the objects in the shadows.

Whiz quiz

Most remote sensing systems avoid detecting and recording wavelengths in the ultraviolet and blue portions of the spectrum. Explain why this would be the case. The answer is ...

2. What do you think would be some of the best atmospheric conditions for remote sensing in the visible portion of the spectrum? The answer is ...

Whiz quiz - Answer

1. Detecting and recording the ultraviolet and blue wavelengths of radiation is difficult because of scattering and absorption in the atmosphere. Ozone gas in the upper atmosphere absorbs most of the ultraviolet radiation of wavelengths shorter than about 0.25 µm. This is actually a positive thing for us and most other living things, because of the harmful nature of ultraviolet radiation below these wavelengths. Rayleigh scattering, which affects the shorter wavelengths more severely than longer wavelengths, causes the remaining UV radiation and the shorter visible wavelengths (i.e. blue) to be scattered much more than longer wavelengths, so that very little of this energy is able to reach and interact with the Earth's surface. In fact, blue light is scattered about 4 times as much as red light, while UV light is scattered 16 times as much as red light!

2. Around noon on a sunny, dry day with no clouds and no pollution would be very good for remote sensing in the visible wavelengths. At noon the sun would be at its most directly overhead point, which would reduce the distance the radiation h

to travel and therefore the effects of scattering, to a minimum. Cloud-free conditions would ensure that there will be uniform illumination and that there will be no shadows from clouds. Dry, pollutant-free conditions would minimize the scattering and absorption that would take place due to water droplets and other particles in the atmosphere.

Unit4

Geographic information system

"GIS" redirects here. For other uses, see

A geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data. The acronym GIS is sometimes used for geographic information science (GIScience) to refer to the academic discipline that studies geographic information systems and is a large domain within the broader academic discipline of Geoinformatics. ^[1] What goes beyond a GIS is a spatial data infrastructure, a concept that has no such restrictive boundaries.

In a general sense, the term describes any information system that integrates, stores, edits, analyzes, shares, and displays geographic information. GIS applications are tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data in maps, and present the results of all these operations. [2][3] Geographic information science is the science underlying geographic concepts, applications, and systems. [4]

GIS is a broad term that can refer to a number of different technologies, processes, and methods. It is attached to many operations and has many applications related to engineering, planning, management, transport/logistics, insurance, telecommunications, and business. ^[3] For that reason, GIS and location intelligence applications can be the foundation for many location-enabled services that rely on analysis and visualization.

GIS can relate unrelated information by using location as the key index variable. Locations or extents in the Earth space—time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. All Earth-based spatial—temporal location and extent references should, ideally, be relatable to one another and ultimately

to a "real" physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry.

GIS techniques and technology

Modern GIS technologies use digital information, for which various digitized data creation

methods are used. The most common method of data creation is digitization, where a hard copy map or survey plan is transferred into a digital medium through the use of a CAD program, and geo-referencing capabilities. With the wide availability of ortho-rectified imagery (from satellites, aircraft, Helikites and UAVs), heads-up digitizing is becoming the main avenue through which geographic data is extracted. Heads-up digitizing involves the tracing of geographic data directly on top of the aerial imagery instead of by the traditional method of tracing the geographic form on a separate digitizing tablet (heads-down digitizing). [clarification needed]

Relating information from different sources

GIS uses spatio-temporal (space-time) location as the key index variable for all other information. Just as a relational database containing text or numbers can relate many different tables using common key index variables, GIS can relate otherwise unrelated information by using location as the key index variable. The key is the location and/or extent in space-time.

Any variable that can be located spatially, and increasingly also temporally, can be referenced using a GIS. Locations or extents in Earth space—time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. These GIS coordinates may represent other quantified systems of temporo-spatial reference (for example, film frame number, stream gage station, highway mile-marker, surveyor benchmark, building address, street intersection, entrance gate, water depth sounding, POS or CAD drawing origin/units). Units applied to recorded temporal-spatial data can vary widely (even when using exactly the same data, see map projections), but all Earth-based spatial—temporal location and extent references should, ideally, be relatable to one another and ultimately to a "real" physical location or extent in space—time.

Related by accurate spatial information, an incredible variety of real-world and projected past or future data can be analyzed, interpreted and represented. ^[15] This key characteristic of GIS has

begun to open new avenues of scientific inquiry into behaviors and patterns of real-world

information that previously had not been systematically correlated.

GIS uncertainties

GIS accuracy depends upon source data, and how it is encoded to be data referenced. Land

surveyors have been able to provide a high level of positional accuracy utilizing the GPS-

derived positions. [16] High-resolution digital terrain and aerial imagery, [17] powerful computers

and Web technology are changing the quality, utility, and expectations of GIS to serve society on

a grand scale, but nevertheless there are other source data that have an impact on overall GIS

accuracy like paper maps, though these may be of limited use in achieving the desired accuracy

since the aging of maps affects their dimensional stability.

In developing a digital topographic database for a GIS, topographical maps are the main source,

aerial photography and satellite imagery are extra sources for collecting data and

identifying attributes which can be mapped in layers over a location facsimile of scale. The scale

of a map and geographical rendering area representation type [clarification needed] are very important

aspects since the information content depends mainly on the scale set and resulting locatability of

the map's representations. In order to digitize a map, the map has to be checked within theoretical

dimensions, then scanned into a raster format, and resulting raster data has to be given a

theoretical dimension by a rubber sheeting/warping technology process.

A quantitative analysis of maps brings accuracy issues into focus. The electronic and other

equipment used to make measurements for GIS is far more precise than the machines of

conventional map analysis. All geographical data are inherently inaccurate, and these

inaccuracies will propagate through GIS operations in ways that are difficult to predict.

Data representation

Main article: GIS file formats

GIS data represents real objects (such as roads, land use, elevation, trees, waterways, etc.) with digital data determining the mix. Real objects can be divided into two abstractions: discrete objects (e.g., a house) and continuous fields (such as rainfall amount, or elevations). Traditionally, there are two broad methods used to store data in a GIS for both kinds of abstractions mapping references: raster images and vector. Points, lines, and polygons are the

stuff of mapped location attribute references. A new hybrid method of storing data is that of identifying point clouds, which combine three-dimensional points with RGB information at each point, returning a " 3D color image". GIS thematic maps then are becoming more and more realistically visually descriptive of what they set out to show or determine.

Data capture

Example of hardware for mapping (GPS and laser rangefinder) and data collection (rugged computer). The current trend for geographical information system (GIS) is that accurate mapping and data analysis are completed while in the field. Depicted hardware (field-map technology) is used mainly for forest inventories, monitoring and mapping.

Data capture—entering information into the system—consumes much of the time of GIS practitioners. There are a variety of methods used to enter data into a GIS where it is stored in a

digital format.

Existing data printed on paper or PET film maps can be digitized or scanned to produce digital data. A digitizer produces vector data as an operator traces points, lines, and polygon boundaries from a map. Scanning a map results in raster data that could be further processed to produce vector data.

Survey data can be directly entered into a GIS from digital data collection systems on survey instruments using a technique called coordinate geometry (COGO). Positions from a global navigation satellite system (GNSS) like Global Positioning System can also be collected and then imported into a GIS. A current trend in data collection gives users the ability to utilize field

computers with the ability to edit live data using wireless connections or disconnected editing sessions. This has been enhanced by the availability of low-cost mapping-grade GPS units with decimeter accuracy in real time. This eliminates the need to post process, import, and update the data in the office after fieldwork has been collected. This includes the ability to incorporate positions collected using a laser rangefinder. New technologies also allow users to create maps as well as analysis directly in the field, making projects more efficient and mapping more accurate.

Remotely sensed data also plays an important role in data collection and consist of sensors attached to a platform. Sensors include cameras, digital scanners and lidar, while platforms usually consist of aircraft and satellites. In England in the mid 1990s, hybrid kite/balloons called Helikites first pioneered the use of compact airborne digital cameras as airborne Geo-Information Systems. Aircraft measurement software, accurate to 0.4 mm was used to link the photographs and measure the ground. Helikites are inexpensive and gather more accurate data than aircraft. Helikites can be used over roads, railways and towns where UAVs are banned.

Recently with the development of miniature UAVs, aerial data collection is becoming possible with them. For example, the Aeryon Scout was used to map a 50-acre area with a Ground sample distance of 1 inch (2.54 cm) in only 12 minutes. ^[18]

The majority of digital data currently comes from photo interpretation of aerial photographs. Soft-copy workstations are used to digitize features directly from stereo pairs of digital photographs. These systems allow data to be captured in two and three dimensions, with elevations measured directly from a stereo pair using principles of photogrammetry. Analog aerial photos must be scanned before being entered into a soft-copy system, for high-quality digital cameras this step is skipped.

Satellite remote sensing provides another important source of spatial data. Here satellites use different sensor packages to passively measure the reflectance from parts of the electromagnetic spectrum or radio waves that were sent out from an active sensor such as radar. Remote sensing collects raster data that can be further processed using different bands to identify objects and classes of interest, such as land cover.

When data is captured, the user should consider if the data should be captured with either a relative accuracy or absolute accuracy, since this could not only influence how information will be interpreted but also the cost of data capture.

After entering data into a GIS, the data usually requires editing, to remove errors, or further processing. For vector data it must be made "topologically correct" before it can be used for some advanced analysis. For example, in a road network, lines must connect with nodes at an intersection. Errors such as undershoots and overshoots must also be removed. For scanned maps, blemishes on the source map may need to be removed from the resulting raster. For example, a fleck of dirt might connect two lines that should not be connected.

Raster-to-vector translation

Data restructuring can be performed by a GIS to convert data into different formats. For example, a GIS may be used to convert a satellite image map to a vector structure by generating lines around all cells with the same classification, while determining the cell spatial relationships, such as adjacency or inclusion.

More advanced data processing can occur with image processing, a technique developed in the

late 1960s by NASA and the private sector to provide contrast enhancement, false color

rendering and a variety of other techniques including use of two dimensional Fourier transforms.

Since digital data is collected and stored in various ways, the two data sources may not be

entirely compatible. So a GIS must be able to convert geographic data from one structure to

another. In so doing, the implicit assumptions behind different ontologies and classifications

require analysis. [19] Object ontologies have gained increasing prominence as a consequence of

object-oriented programming and sustained work by Barry Smith and co-workers.

Projections, coordinate systems, and registration

Main article: Map Projection

The earth can be represented by various models, each of which may provide a different set of

coordinates (e.g., latitude, longitude, elevation) for any given point on the Earth's surface. The

simplest model is to assume the earth is a perfect sphere. As more measurements of the earth

have accumulated, the models of the earth have become more sophisticated and more accurate.

In fact, there are models called datums that apply to different areas of the earth to provide

increased accuracy, like NAD83 for U.S. measurements, and the World Geodetic System for

worldwide measurements.

Spatial analysis with geographical information system (GIS)

GIS spatial analysis is a rapidly changing field, and GIS packages are increasingly including analytical tools as standard built-in facilities, as optional toolsets, as add-ins or 'analysts'. In many instances these are provided by the original software suppliers (commercial vendors or collaborative non commercial development teams), whilst in other cases facilities have been developed and are provided by third parties. Furthermore, many products offer software development kits (SDKs), programming languages and language support, scripting facilities and/or special interfaces for developing one's own analytical tools or variants. The website "Geospatial Analysis" and associated book/ebook attempt to provide a reasonably comprehensive guide to the subject. [20] The increased availability has created a new dimension to business intelligence termed " spatial intelligence" which, when openly delivered via intranet, democratizes access to geographic and social network data. Geospatial intelligence, based on GIS spatial analysis, has also become a key element for security. GIS as a whole can be described as conversion to a vectorial representation or to any other digitisation process.

Slope and aspect

Slope can be defined as the steepness or gradient of a unit of terrain, usually measured as an angle in degrees or as a percentage. Aspect can be defined as the direction in which a unit of terrain faces. Aspect is usually expressed in degrees from north. Slope, aspect, and surface curvature in terrain analysis are all derived from neighborhood operations using elevation values of a cell's adjacent neighbours. [21] Slope is a function of resolution, and the spatial resolution used to calculate slope and aspect should always be specified. [22] Authors such as Skidmore, [23] Jones [24] and Zhou and Liu [25] have compared techniques for calculating slope and aspect.

The following method can be used to derive slope and aspect:

The elevation at a point or unit of terrain will have perpendicular tangents (slope) passing

through the point, in an east-west and north-south direction. These two tangents give two components, $\partial z/\partial x$ and $\partial z/\partial y$, which then be used to determine the overall direction of slope, and the aspect of the slope. The gradient is defined as a vector quantity with components equal to the partial derivatives of the surface in the x and y directions.

The calculation of the overall 3x3 grid slope *S* and aspect *A* for methods that determine east-west and north-south component use the following formulas respectively:

$$\tan S = \sqrt{\left(\frac{\frac{1}{2}\frac{2}{3}}{\frac{1}{2}n^2}\right)^2 - \frac{\frac{6n}{2}}{\frac{1}{2}\eta}}$$

$$\tan A = \left(\frac{\left(\frac{-\partial z}{\partial y}\right)^{\gamma}}{\left(\frac{\partial z}{\partial x}\right)^{\gamma}}\right)$$

Zhou and Liu [25] describe another algorithm for calculating aspect, as follows:

$$A = 270^{\circ} - \arctan\left(\frac{\frac{\frac{2\pi}{3}}{\frac{2\pi}{3}}}{\frac{\frac{2\pi}{3}}{\frac{2\pi}{3}}} - 30^{\circ} - \frac{\frac{lv}{ln}}{\frac{lw}{ln}}\right)$$

Data analysis

It is difficult to relate wetlands maps to rainfall amounts recorded at different points such as airports, television stations, and schools. A GIS, however, can be used to depict two- and three-dimensional characteristics of the Earth's surface, subsurface, and atmosphere from information points. For example, a GIS can quickly generate a map with isopleth or contour lines that indicate differing amounts of rainfall. Such a map can be thought of as a rainfall contour map.

Many sophisticated methods can estimate the characteristics of surfaces from a limited number of point measurements. A two-dimensional contour map created from the surface modeling of rainfall point measurements may be overlaid and analyzed with any other map in a GIS covering the same area. This GIS derived map can then provide additional information - such as the viability of water power potential as a renewable energy source. Similarly, GIS can be used compare other renewable energy resources to find the best geographic potential for a region. [27]

Additionally, from a series of three-dimensional points, or digital elevation model, isopleth lines representing elevation contours can be generated, along with slope analysis, shaded relief, and other elevation products. Watersheds can be easily defined for any given reach, by computing all of the areas contiguous and uphill from any given point of interest. Similarly, an expected

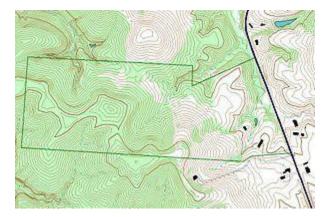
thalweg of where surface water would want to travel in intermittent and permanent streams can be computed from elevation data in the GIS.

Topological modeling

A GIS can recognize and analyze the spatial relationships that exist within digitally stored spatial data. These topological relationships allow complex spatial modelling and analysis to be performed. Topological relationships between geometric entities traditionally include adjacency (what adjoins what), containment (what encloses what), and proximity (how close something is to something else).

Geometric networks

Geometric networks are linear networks of objects that can be used to represent interconnected features, and to perform special spatial analysis on them. A geometric network is composed of edges, which are connected at junction points, similar to graphs in mathematics and computer science. Just like graphs, networks can have weight and flow assigned to its edges, which can be used to represent various interconnected features more accurately. Geometric networks are often used to model road networks and public utility networks, such as electric, gas, and water


networks. Network modeling is also commonly employed in transportation planning, hydrology modeling, and infrastructure modeling.

Hydrological modeling

GIS hydrological models can provide a spatial element that other hydrological models lack, with the analysis of variables such as slope, aspect and watershed or catchment area. ^[28] Terrain analysis is fundamental to hydrology, since water always flows down a slope. ^[28] As basic terrain analysis of a digital elevation model (DEM) involves calculation of slope and aspect, DEMs are very useful for hydrological analysis. Slope and aspect can then be used to determine direction of surface runoff, and hence flow accumulation for the formation of streams, rivers and lakes. Areas of divergent flow can also give a clear indication of the boundaries of a catchment. Once a flow direction and accumulation matrix has been created, queries can be performed that show contributing or dispersal areas at a certain point. ^[28] More detail can be added to the model, such as terrain roughness, vegetation types and soil types, which can influence infiltration and

evapotranspiration rates, and hence influencing surface flow. One of the main uses of hydrological modeling is in environmental contamination research.

Cartographic modeling

An example of use of layers in a GIS application. In this example, the forest cover layer (light green) is at the bottom, with the topographic layer over it. Next up is the stream layer, then the boundary layer, then the road layer. The order is very important in order to properly display the final result. Note that the pond layer was located just below the stream layer, so that a stream line can be seen overlying one of the ponds.

The term "cartographic modeling" was probably coined by Dana Tomlin in his PhD dissertation and later in his book which has the term in the title. Cartographic modeling refers to a process where several thematic layers of the same area are produced, processed, and analyzed. Tomlin used raster layers, but the overlay method (see below) can be used more generally. Operations on map layers can be combined into algorithms, and eventually into simulation or optimization models.

UNIT-5

Map overlay

The combination of several spatial datasets (points, lines, or polygons) creates a new output

vector dataset, visually similar to stacking several maps of the same region. These overlays are

similar to mathematical Venn diagram overlays. A union overlay combines the geographic

features and attribute tables of both inputs into a single new output. An intersect overlay defines

the area where both inputs overlap and retains a set of attribute fields for each. A symmetric

difference overlay defines an output area that includes the total area of both inputs except for the

overlapping area.

Data extraction is a GIS process similar to vector overlay, though it can be used in either vector

or raster data analysis. Rather than combining the properties and features of both datasets, data

extraction involves using a "clip" or "mask" to extract the features of one data set that fall within

the spatial extent of another dataset.

In raster data analysis, the overlay of datasets is accomplished through a process known as "local

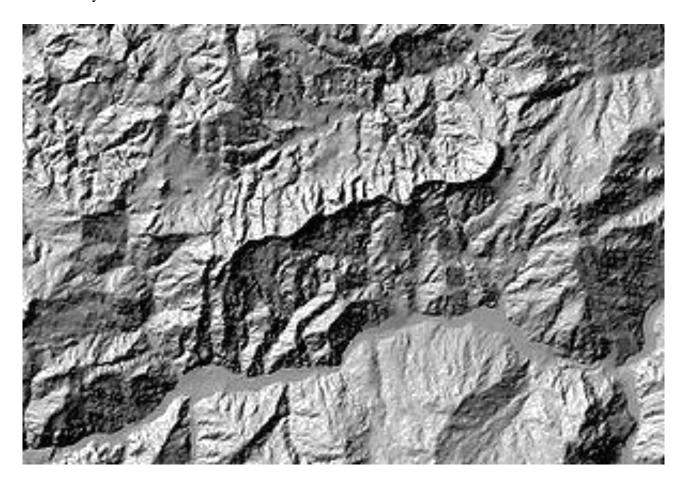
operation on multiple rasters" or " map algebra," through a function that combines the values of

each raster's matrix. This function may weigh some inputs more than others through use of an

"index model" that reflects the influence of various factors upon a geographic phenomenon.

Geostatistics

Main article: Geostatistics


Geostatistics is a branch of statistics that deals with field data, spatial data with a continuous

index. It provides methods to model spatial correlation, and predict values at arbitrary locations

(interpolation).

When phenomena are measured, the observation methods dictate the accuracy of any subsequent analysis. Due to the nature of the data (e.g. traffic patterns in an urban environment; weather patterns over the Pacific Ocean), a constant or dynamic degree of precision is always lost in the measurement. This loss of precision is determined from the scale and distribution of the data collection.

To determine the statistical relevance of the analysis, an average is determined so that points (gradients) outside of any immediate measurement can be included to determine their predicted behavior. This is due to the limitations of the applied statistic and data collection methods, and interpolation is required to predict the behavior of particles, points, and locations that are not directly measurable.

Hillshade model derived from a Digital Elevation Model of the Valestra area in the northern

Apennines (Italy)

Interpolation is the process by which a surface is created, usually a raster dataset, through the

input of data collected at a number of sample points. There are several forms of interpolation,

each which treats the data differently, depending on the properties of the data set. In comparing

interpolation methods, the first consideration should be whether or not the source data will

change (exact or approximate). Next is whether the method is subjective, a human interpretation,

or objective. Then there is the nature of transitions between points: are they abrupt or gradual.

Finally, there is whether a method is global (it uses the entire data set to form the model), or

local where an algorithm is repeated for a small section of terrain.

Interpolation is a justified measurement because of a spatial autocorrelation principle that

recognizes that data collected at any position will have a great similarity to, or influence of those

locations within its immediate vicinity.

Digital elevation models, triangulated irregular networks, edge-finding algorithms, Thiessen

polygons, Fourier analysis, (weighted) moving averages, inverse distance weighting, kriging,

spline, and trend surface analysis are all mathematical methods to produce interpolative data.

Address geocoding

Main article: Geocoding

Geocoding is interpolating spatial locations (X,Y coordinates) from street addresses or any other

spatially referenced data such as ZIP Codes, parcel lots and address locations. A reference

theme

The individual address locations have historically been interpolated, or estimated, by examining address ranges along a road segment. These are usually provided in the form of a table or database. The software will then place a dot approximately where that address belongs along the segment of centerline. For example, an address point of 500 will be at the midpoint of a line segment that starts with address 1 and ends with address 1,000. Geocoding can also be applied against actual parcel data, typically from municipal tax maps. In this case, the result of the geocoding will be an actually positioned space as opposed to an interpolated point. This approach is being increasingly used to provide more precise location information.

Reverse geocoding

Reverse geocoding is the process of returning an estimated street address number as it relates to a given coordinate. For example, a user can click on a road centerline theme (thus providing a coordinate) and have information returned that reflects the estimated house number. This house number is interpolated from a range assigned to that road segment. If the user clicks at the midpoint of a segment that starts with address 1 and ends with 100, the returned value will be

somewhere near 50. Note that reverse geocoding does not

return actual addresses, only estimates of what should be there based on

the predetermined range.

Multi-criteria decision analysis

Coupled with GIS, multi-criteria decision analysis methods support decision-makers in analysing a set of alternative spatial solutions, such as the most likely ecological habitat for restoration, against multiple criteria, such as vegetation cover or roads. MCDA uses decision rules to aggregate the criteria, which allows the alternative solutions to be ranked or prioritised. [29] GIS MCDA may reduce costs and time involved in identifying potential restoration sites.

Data output and cartography

Cartography is the design and production of maps, or visual representations of spatial data. The vast majority of modern cartography is done with the help of computers, usually using GIS but

production of quality cartography is also achieved by importing layers into a design program to refine it. Most GIS software gives the user substantial control over the appearance of the data. Cartographic work serves two major functions:

First, it produces graphics on the screen or on paper that convey the results of analysis to the people who make decisions about resources. Wall maps and other graphics can be generated, allowing the viewer to visualize and thereby understand the results of analyses or simulations of potential events. Web Map Servers facilitate distribution of generated maps through web browsers using various implementations of web-based application programming interfaces (AJAX, Java, Flash, etc.).

Second, other database information can be generated for further analysis or use. An example would be a list of all addresses within one mile (1.6 km) of a toxic spill.

Graphic display techniques

Traditional maps are abstractions of the real world, a sampling of important elements portrayed on a sheet of paper with symbols to represent physical objects. People who use maps must interpret these symbols. Topographic maps show the shape of land surface with contour lines or with shaded relief.

Today, graphic display techniques such as shading based on altitude in a GIS can make relationships among map elements visible, heightening one's ability to extract and analyze information. For example, two types of data were combined in a GIS to produce a perspective view of a portion of San Mateo County, California.

The digital elevation model, consisting of surface elevations recorded on a 30-meter horizontal grid, shows high elevations as white and low elevation as black.

The accompanying Landsat Thematic Mapper image shows a false-color infrared image looking down at the same area in 30-meter pixels, or picture elements, for the same coordinate points, pixel by pixel, as the elevation information.

A GIS was used to register and combine the two images to render the three-dimensional perspective view looking down the San Andreas Fault, using the Thematic Mapper image pixels, but shaded using the elevation of the landforms. The GIS display depends on the viewing point of the observer and time of day of the display, to properly render the shadows created by the sun's rays at that latitude, longitude, and time of day.

An archeochrome is a new way of displaying spatial data. It is a thematic on a 3D map that is applied to a specific building or a part of a building. It is suited to the visual display of heat-loss data.

Spatial ETL

Spatial ETL tools provide the data processing functionality of traditional Extract, Transform, Load (ETL) software, but with a primary focus on the ability to manage spatial data. They provide GIS users with the ability to translate data between different standards and proprietary formats, whilst geometrically transforming the data en route. These tools can come in the form of add-ins to existing wider-purpose software such as Microsoft Excel.

GIS data mining

GIS or spatial data mining is the application of data mining methods to spatial data. Data mining, which is the partially automated search for hidden patterns in large databases, offers great potential benefits for applied GIS-based decision making. Typical applications include environmental monitoring. A characteristic of such applications is that spatial correlation

between data measurements require the use of specialized algorithms for more efficient data analysis. [30]

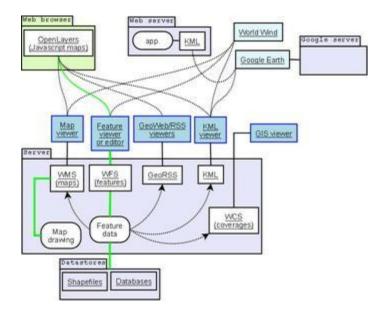
Applications

The implementation of a GIS is often driven by jurisdictional (such as a city), purpose, or application requirements. Generally, a GIS implementation may be custom-designed for an organization. Hence, a GIS deployment developed for an application, jurisdiction, enterprise, or purpose may not be necessarily interoperable or compatible with a GIS that has been developed for some other application, jurisdiction, enterprise, or purpose. [citation needed]

GIS provides, for every kind of location based organization, a platform to update geographical data without wasting time to visit the field and update a database manually. GIS when integrated with other powerful enterprise solutions like SAP, [clarification needed] helps creating powerful

GeaBios – tiny WMS/ WFS client (Flash/ DHTML)

Many disciplines can benefit from GIS technology. An active GIS market has resulted in lower costs and continual improvements in the hardware and software components of GIS, and usage in the fields of science, government, business, and industry, with applications including real estate, public health, crime mapping, national defense, sustainable development, natural resources, climatology, landscape architecture, archaeology, regional and community planning, transportation and logistics. GIS is also diverging into location-based services, which allows GPS-enabled mobile devices to display their location in relation to fixed objects (nearest restaurant, gas station, fire hydrant) or mobile objects (friends, children, police car), or to relay their position back to a central server for display or other processing.


Open Geospatial Consortium standards

Open Geospatial Consortium

The Open Geospatial Consortium (OGC) is an international industry consortium of 384 companies, government agencies, universities, and individuals participating in a consensus process to develop publicly available geoprocessing specifications. Open interfaces and

protocols defined by OpenGIS Specifications support interoperable solutions that "geo-enable" the Web, wireless and location-based services, and mainstream IT, and empower technology developers to make complex spatial information and services accessible and useful with all kinds of applications. Open Geospatial Consortium protocols include Web Map Service, and Web Feature Service. [33]

GIS products are broken down by the OGC into two categories, based on how completely and accurately the software follows the OGC specifications.

OGC standards help GIS tools communicate.

Compliant Products are software products that comply to OGC's OpenGIS Specifications. When a product has been tested and certified as compliant through the OGC Testing Program, the product is automatically registered as "compliant" on this site.

Implementing Products are software products that implement OpenGIS Specifications but have not yet passed a compliance test. Compliance tests are not available for all specifications. Developers can register their products as implementing draft or approved specifications, though OGC reserves the right to review and verify each entry.

Web mapping

In recent years there has been an explosion of mapping applications on the web such as Google Maps and Bing Maps. These websites give the public access to huge amounts of geographic data.

Some of them, like Google Maps and OpenLayers, expose an API that enable users to create custom applications. These toolkits commonly offer street maps, aerial/satellite imagery,

geocoding, searches, and routing functionality. Web mapping has also uncovered the potential of crowdsourcing geodata in projects like OpenStreetMap, which is a collaborative project to create a free editable map of the world.

Adding the dimension of time

The condition of the Earth's surface, atmosphere, and subsurface can be examined by feeding satellite data into a GIS. GIS technology gives researchers the ability to examine the variations in Earth processes over days, months, and years. As an example, the changes in vegetation vigor through a growing season can be animated to determine when drought was most extensive in a particular region. The resulting graphic represents a rough measure of plant health. Working with two variables over time would then allow researchers to detect regional differences in the lag between a decline in rainfall and its effect on vegetation.

GIS technology and the availability of digital data on regional and global scales enable such analyses. The satellite sensor output used to generate a vegetation graphic is produced for example by the Advanced Very High Resolution Radiometer (AVHRR). This sensor system detects the amounts of energy reflected from the Earth's surface across various bands of the spectrum for surface areas of about 1 square kilometer. The satellite sensor produces images of a particular location on the Earth twice a day. AVHRR and more recently the Moderate-Resolution Imaging Spectroradiometer (MODIS) are only two of many sensor systems used for Earth surface analysis. More sensors will follow, generating ever greater amounts of data.

In addition to the integration of time in environmental studies, GIS is also being explored for its ability to track and model the progress of humans throughout their daily routines. A concrete example of progress in this area is the recent release of time-specific population data by the U.S. Census. In this data set, the populations of cities are shown for daytime and evening hours highlighting the pattern of concentration and dispersion generated by North American

commuting patterns. The manipulation and generation of data required to produce this data would not have been possible without GIS.

Using models to project the data held by a GIS forward in time have enabled planners to test policy decisions using spatial decision support systems.

Semantics

Tools and technologies emerging from the Data Activity are proving useful for data integration problems in information systems. Correspondingly, such technologies have been proposed as a means to facilitate interoperability and data reuse among GIS applications. and also to enable new analysis mechanisms.

Ontologies are a key component of this semantic approach as they allow a formal, machinereadable specification of the concepts and relationships in a given domain. This in turn allows a GIS to focus on the intended meaning of data rather than its syntax or structure. For example, reasoning that a land cover type classified as deciduous needleleaf trees in one dataset is a specialization or subset of land cover type forest in another more roughly classified dataset can help a GIS automatically merge the two datasets under the more general land cover classification. Tentative ontologies have been developed in areas related to GIS applications, for example the hydrology ontology developed by the Ordnance Survey in the United Kingdom and the SWEET ontologies developed by NASA's Jet Propulsion Laboratory. Also, simpler ontologies and semantic metadata standards are being proposed by the W3C Geo Incubator Group [39] to represent geospatial data on the web. GeoSPARQL is a standard developed by the Ordnance Survey, United States Geological Survey, Natural Resources Canada, Australia's Commonwealth Scientific and Industrial Research Organisation and others to support ontology creation and reasoning using well-understood OGC literals (GML, WKT), topological relationships (Simple Features, RCC8, DE-9IM), RDF and the SPARQL database query protocols.

Recent research results in this area can be seen in the International Conference on Geospatial

Semantics and the Terra Cognita – Directions to the Geospatial Semantic Web [41] workshop at the International Semantic Web Conference.

Society

Main articles: Neogeography and Public Participation GIS

With the popularization of GIS in decision making, scholars^[who?] have begun to scrutinize the social implications of GIS. It has been argued^[by whom?] that the production, distribution, utilization, and representation of geographic information are largely related with the social context.^[clarification needed] Other related topics include discussion on copyright, privacy, and censorship. A more optimistic social approach to GIS adoption is to use it as a tool for public participation.