
Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 50 
 

 

 

 
UNIT - IV     

 

INSTRUCTION –LEVEL PARALLELISM – 2:  

 

Exploiting ILP using multiple issue and static scheduling 

 

 Exploiting ILP using dynamic scheduling 

 

Multiple issue and speculation 

 

Advanced Techniques for instruction delivery and Speculation 

 

 The Intel Pentium 4 as example.                 7 Hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smartworld.asia 1 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 51 
 

 

 

UNIT IV 

 

INSTRUCTION –LEVEL PARALLELISM – 2 

 

What is ILP? 
• Instruction Level Parallelism 

– Number of operations (instructions) that can be performed in parallel 

• Formally, two instructions are parallel if they can execute simultaneously in a pipeline 

of arbitrary depth without causing any stalls assuming that the pipeline has sufficient 

resources 

– Primary techniques used to exploit ILP 

• Deep pipelines 

• Multiple issue machines 

• Basic program blocks tend to have 4-8 instructions between branches 

– Little ILP within these blocks 

– Must find ILP between groups of blocks 

 

Example Instruction Sequences 

 

• Independent instruction sequence: 

 

lw $10, 12($1) 

sub $11, $2, $3 

and $12, $4, $5 

or $13, $6, $7 

add $14, $8, $9 

 
• Dependent instruction sequence: 

 

lw $10, 12($1) 

sub $11, $2, $10 

and $12, $11, $10 

or $13, $6, $7 

add $14, $8, $13 

 

Finding ILP: 
• Must deal with groups of basic code blocks 

• Common approach: loop-level parallelism 

Smartworld.asia 2 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 52 
 

– Example: 

– In MIPS (assume $s0 initialized properly): 

 

for (i=1000; i > 0; i--) 

x[i] = x[i] + s; 

Loop: lw $t0, 0($s1) # t0 = array element 

addu $t0, $t0, $s2 # add scalar in $s2 

sw $t0, 0($s1) # store result 

addi $s1, $s1, -4 # decrement pointer 

bne $s1, $0, Loop # branch $s1 != 0 

 

Loop Unrolling: 
 • Technique used to help scheduling (and performance) 

• Copy the loop body and schedule instructions from different iterations of the 

loop  gether 

• MIPS example (from prev. slide): 

 

Loop: lw $t0, 0($s1) # t0 = array element 

addu $t0, $t0, $s2 # add scalar in $s2 

sw $t0, 0($s1) # store result 

lw $t1, -4($s1) 

addu $t1, $t1, $s2 

sw $t1, -4($s1) 

addi $s1, $s1, -8 # decrement pointer 

bne $s1, $0, Loop # branch $s1 != 0 

 

Note the new register & counter adjustment! 

• Previous example, we unrolled the loop once 

– This gave us a second copy 

• Why introduce a new register ($t1)? 

– Antidependence (name dependence) 

• Loop iterations would reuse register $t0 

• No data overlap between loop iterations! 

• Compiler RENAMED the register to prevent a “dependence” 

– Allows for better instruction scheduling and identification of true dependencies  

• In general, you can unroll the loop as much as you want 

– A factor of the loop counter is generally used 

– Limited advantages to unrolling more than a few times 

 

 

Loop Unrolling: Performance: 
• Performance (dis)advantage of unrolling 

– Assume basic 5-stage pipeline 

• Recall lw requires a bubble if value used immediately after 

• For original loop 

– 10 cycles to execute first iteration 

Smartworld.asia 3 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 53 
 

– 16 cycles to execute two iterations 

• Assuming perfect prediction 

• For unrolled loop 

– 14 cycles to execute first iteration -- without reordering 

• Gain from skipping addi, bne 

– 12 cycles to execute first iteration -- with reordering 

• Put lw together, avoid bubbles after ea 

 

Loop Unrolling: Limitations 
• Overhead amortization decreases as loop is  unrolled more 

• Increase in code size 

– Could be bad if ICache miss rate increases 

• Register pressure 

– Run out of registers that can be used in renaming process 

–  

Exploiting ILP: Deep Pipelines 
Deep Pipelines 

• Increase pipeline depth beyond 5 stages 

– Generally allows for higher clock rates 

– UltraSparc III -- 14 stages 

– Pentium III -- 12 stages 

– Pentium IV -- 22 stages 

• Some versions have almost 30 stages 

– Core 2 Duo -- 14 stages 

– AMD Athlon -- 9 stages 

– AMD Opteron -- 12 stages 

– Motorola G4e -- 7 stages 

– IBM PowerPC 970 (G5) -- 14 stages 

• Increases the number of instructions executing at the same time 

• Most of the CPUs listed above also issue multiple instructions per cycle 

 

Issues with Deep Pipelines 
• Branch (Mis-)prediction 

– Speculation: Guess the outcome of an instruction to remove it as a dependence 

to other instructions 

– Tens to hundreds of instructions “in flight” 

– Have to flush some/all if a branch is mispredicted 

• Memory latencies/configurations 

– To keep latencies reasonable at high clock rates, need fast caches  

– Generally smaller caches are faster 

– Smaller caches have lower hit rates 

• Techniques like way prediction and prefetching can help lower latencies 

 

Optimal Pipelining Depths 
• Several papers published on this topic 

– Esp. the 29th International Symposium on Computer Architecture (ISCA) 

Smartworld.asia 4 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 54 
 

– Intel had one pushing the depth to 50 stages 

– Others have shown ranges between 15 and 40 

– Most of the variation is due to the intended workload 

Exploiting ILP: Multiple Issue Computers 

 
Multiple Issue Computers 

 

• Benefit 

– CPIs go below one, use IPC instead (instructions/cycle) 

– Example: Issue width = 3 instructions, Clock = 3GHz 

• Peak rate: 9 billion instructions/second, IPC = 3 

• For our 5 stage pipeline, 15 instructions “in flight” at any given time 

• Multiple Issue types 

– Static 

• Most instruction scheduling is done by the compiler 

– Dynamic (superscalar) 

• CPU makes most of the scheduling decisions 

• Challenge: overcoming instruction  dependencies 

– Increased latency for loads 

– Control hazards become worse 

• Requires a more ambitious design 

– Compiler techniques for scheduling 

– Complex instruction decoding logic 

 

Exploiting ILP:Multiple Issue Computers Static Scheduling 

 
Instruction Issuing 

• Have to decide which instruction types can issue in a cycle 

– Issue packet: instructions issued in a single clock cycle 

– Issue slot: portion of an issue packet 

• Compiler assumes a large responsibility for hazard checking, scheduling, etc.  

Static Multiple Issue 

For now, assume a “souped-up” 5-stage MIPS pipeline that can issue a packet with: 

– One slot is an ALU or branch instruction 

One slot is a load/store instruction 

Smartworld.asia 5 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 55 
 

–  

 

Static Multiple Issue 
 

 
 

Static Multiple Issue Scheduling 

Smartworld.asia 6 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 56 
 

 
 

Static Mult. Issue w/Loop Unrolling 

 
 

 

Static Mult. Issue w/Loop Unrolling 

Smartworld.asia 7 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 57 
 

 
 

 
Exploiting ILP:Multiple Issue Computers Dynamic Scheduling 

 
Dynamic Multiple Issue Computers 

• Superscalar computers 

• CPU generally manages instruction issuing and ordering 

– Compiler helps, but CPU dominates  

• Process 

– Instructions issue in-order 

– Instructions can execute out-of-order 

• Execute once all operands are ready 

– Instructions commit in-order 

• Commit refers to when the architectural register file is updated (current completed state 

of program 

Aside: Data Hazard Refresher 

• Two instructions (i and j), j follows i in program order 

• Read after Read (RAR) 

• Read after Write (RAW) 

– Type: 

– Problem: 

• Write after Read (WAR) 

– Type: 

– Problem: 

• Write after Write (WAW) 

– Type: Problem: 

Superscalar Processors 

Smartworld.asia 8 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 58 
 

• Register Renaming 

– Use more registers than are defined by the architecture 

• Architectural registers: defined by ISA 

• Physical registers: total registers 

– Help with name dependencies 

• Antidependence 

– Write after Read hazard 

• Output dependence 

– Write after Write hazard 

 

Tomasulo’s Superscalar Computers 

 
• R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”, 

IBM J. of Research and Development, Jan. 1967  

• See also: D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360 

model 91: Machine philosophy and instruction-handling,” IBM J. of Research and  

evelopment, Jan. 1967 

• Allows out-of-order execution 

• Tracks when operands are available 

– Minimizes RAW hazards 

• Introduced renaming for WAW and WAR 

hazards 

Tomasulo’s Superscalar Computers 

 

 

 
 

 

Smartworld.asia 9 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 59 
 

Instruction Execution Process 
• Three parts, arbitrary number of cycles/part 

• Above does not allow for speculative execution 

• Issue (aka Dispatch) 

– If empty reservation station (RS) that matches instruction, send to RS with operands  

rom register file and/or know which functional unit will send operand 

– If no empty RS, stall until one is available 

 

Rename registers as appropriate 

Instruction Execution Process 

• Execute 

– All branches before instruction must be resolved 

• Preserves exception behavior 

– When all operands available for an instruction, send it to functional unit 

• Monitor common data bus (CDB) to see if result is needed by RS entry 

– For non-load/store reservation stations 

• If multiple instructions ready, have to pick one to send to functional unit 

– For load/store 

• Compute address, then place in buffer 

• Loads can execute once memory is free 

• Stores must wait for value to be stored, then execute 

 

Write Back 

– Functional unit places on CDB 

• Goes to both register file and reservation stations 

– Use of CDB enables forwarding for RAW hazards 

– Also introduces a latency between result and use of a value 

 

 

Reservation Stations 

 
• Require 7 fields 

– Operation to perform on operands (2 operands) 

– Tags showing which RS/Func. Unit will be producing operand (or zero if operand 

available/unnecessary) 

– Two source operand values 

– A field for holding memory address calculation data 

• Initially, immediate field of instruction 

• Later, effective address 

– Busy 

• Indicates that RS and its functional unit are busy 

• Register file support 

– Each entry contains a field that identifies which RS/func. unit will be writing into this 

entry (or blank/zero if noone will be writing to it) Limitation of Current Machine 

 

Instruction execution requires branches to be resolved 

Smartworld.asia 10 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 60 
 

• For wide-issue machines, may issue one branch per clock cycle!  

• Desire: 

– Predict branch direction to get more ILP 

– Eliminate control dependencies 

• Approach: 

– Predict branches, utilize speculative instruction execution  

– Requires mechanisms for “fixing” machine when speculation is incorrect 

Tomasulo’s w/Hardware Speculation 

 

 

 
 

Tomasulo’s w/HW Speculation 

 
• Key aspects of this design 

– Separate forwarding (result bypassing) from actual instruction completion 

• Assuming instructions are executing speculatively 

• Can pass results to later instructions, but prevents instruction from performing updates 

that can’t be “undone” 

– Once instruction is no longer speculative it can update register file/memory 

• New step in execution sequence: instruction commit 

• Requires instructions to wait until they can commit Commits still happen in order 

Reorder Buffer (ROB) 

 

Instructions hang out here before committing 

• Provides extra registers for RS/RegFile 

Smartworld.asia 11 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 61 
 

– Is a source for operands 

• Four fields/entry 

– Instruction type 

• Branch, store, or register operation (ALU & load) 

– Destination field 

• Register number or store address 

– Value field 

• Holds value to write to register or data for store 

– Ready field 

• Has instruction finished executing? 

• Note: store buffers from previous version now in ROB 

Instruction Execution Sequence 

• Issue 

– Issue instruction if opening in RS & ROB 

– Send operands to RS from RegFile and/or ROB 

• Execute 

– Essentially the same as before 

• Write Result 

– Similar to before, but put result into ROB 

• Commit (next slide) 

 
Committing Instructions 

Look at head of ROB 

• Three types of instructions 

– Incorrectly predicted branch 

• Indicates speculation was wrong 

• Flush ROB 

• Execution restarts at proper location – Store 

• Update memory 

• Remove store from ROB 

– Everything else 

• Update registers 

• Remove instruction from ROB 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smartworld.asia 12 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 62 
 

RUU Superscalar Computers 

 
Modeling tool Simple Scalar implements an RUU style processor 

– You will be using this tool after Spring Break 

• Architecture similar to speculative Tomasulo’s 

• Register Update Unit (RUU) 

– Controls instructions scheduling and dispatching to functional units 

– Stores intermediate source values for instructions 

– Ensures instruction commit occurs in order! 

– Needs to be of appropriate size 

• Minimum of issue width * number of pipeline stages 

• Too small of an RUU can be a structural hazard! 

• Result bus could be a structural hazard 

 

 

 

 

 

 

 

 

 

 

 

Smartworld.asia 13 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 63 
 

A Real Computer:Intel Pentium 4 

Pentium 4 Die Photo 

 
 

Overview of P4 

 

Smartworld.asia 14 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 64 
 

 
 

Pentium 4 Pipeline 
 

• See handout for overview of major steps 

• Prescott (90nm version of P4) had 31 pipeline stages 

– Not sure how pipeline is divided up 

–  

 
 

P4: Trace Cache 

 
Non-traditional instruction cache 

• Recall x86 ISA 

Smartworld.asia 15 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 65 
 

– CISC/VLIW: ugly assembly instructions of varying lengths 

– Hard for HW to decode 

– Ended up translating code into RISC-like microoperations to execute 

• Trace Cache holds sequences of RISC-like micro-ops 

– Less time decoding, more time executing 

– Sequence storage similar to “normal” instruction cache 

 

 

P4: Branch Handling 
 

 

BTBs (Branch Target Buffers) 

– Keep both branch history and branch target addresses 

• Target address is instruction immediately after branch 

– Predict if no entry in BTB for branch 

• Static prediction 

• If a backwards branch, see how far target is from current; if within a threshold, predict 

taken, else predict not taken 

• If a forward branch, predict not taken 

• Also some other rules 

• Front-end BTB is L2 (like) for the trace cache BTB (L1 like)  

 

P4: Execution Core 
• Tomasulo’s algorithm-like 

• Can have up to 126 instructions in-flight 

– Max of 3 micro-ops sent to core/cycle 

– Max of 48 loads, 32 stores 

• Send up to 6 instructions to functional units per cycle via 4 ports 

– Port 0: Shared between first fast ALU and FP/Media move scheduler 

– Port 1: Shared between second fast ALU and Complex integer and FP/Media scheduler 

– Port 2: Load 

Port 3: Store 

 

 

P4: Rapid Execution Engine 

Execute 6 micro-ops/cycle 

– Simple ALUs run at 2x machine clock rate 

– Can generate 4 simple ALU results/cycle 

– Do one load and one store per cycle 

• Loads involve data speculation 

– Assume that most loads hit L1 and Data Translation Look-aside Buffer (DTLB) 

– Get data into execution, while doing address check 

• Fix if L1 miss occurred 

 

P4: Memory Tricks 

Smartworld.asia 16 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 66 
 

 
• Store-to-Load Forwarding 

– Stores must wait to write until non-speculative 

– Loads occasionally want data from store location 

– Check both cache and Store Forwarding Buffer 

• SFB is where stores are waiting to be written 

– If hit when comparing load address to SFB address, use SFB data, not cache data 

• Done on a partial address 

• Memory Ordering Buffer 

– Ensures that store-to-load forwarding was correct 

• If not, must re-execute load 

– Force forwarding 

• Mechanism for forwarding in case addresses are misaligned 

• MOB can tell SFB to forward or not 

– False forwarding 

• Fixes partial address match between load and SFB 

 

P4: Specs for Rest of Slides 

 
• For one running at 3.2 GHz 

– From grad arch book 

• L1 Cache 

– Int: Load to use - 4 cycles 

– FP: Load to use - 12 cycles 

– Can handle up to 8 outstanding load misses 

• L2 Cache (2 MB) 

18 cycle access time 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Smartworld.asia 17 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 67 
 

P4: Branch Prediction 

 
 

P4: Misspeculation Percentages 

 

 
 

P4: Data Cache Miss Rates 

 

Smartworld.asia 18 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 68 
 

 
P4: CPI 

 
P4 vs. AMD Opteron 

 

Smartworld.asia 19 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 69 
 

 
 

P4 vs. Opteron: Real Performance 

 

 
 

 

 

 

Smartworld.asia 20 Smartzworld.com




