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UNIT - IV     

 

INSTRUCTION –LEVEL PARALLELISM – 2:  

 

Exploiting ILP using multiple issue and static scheduling 

 

 Exploiting ILP using dynamic scheduling 

 

Multiple issue and speculation 

 

Advanced Techniques for instruction delivery and Speculation 

 

 The Intel Pentium 4 as example.                 7 Hours 
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UNIT IV 

 

INSTRUCTION –LEVEL PARALLELISM – 2 

 

What is ILP? 
• Instruction Level Parallelism 

– Number of operations (instructions) that can be performed in parallel 

• Formally, two instructions are parallel if they can execute simultaneously in a pipeline 

of arbitrary depth without causing any stalls assuming that the pipeline has sufficient 

resources 

– Primary techniques used to exploit ILP 

• Deep pipelines 

• Multiple issue machines 

• Basic program blocks tend to have 4-8 instructions between branches 

– Little ILP within these blocks 

– Must find ILP between groups of blocks 

 

Example Instruction Sequences 

 

• Independent instruction sequence: 

 

lw $10, 12($1) 

sub $11, $2, $3 

and $12, $4, $5 

or $13, $6, $7 

add $14, $8, $9 

 
• Dependent instruction sequence: 

 

lw $10, 12($1) 

sub $11, $2, $10 

and $12, $11, $10 

or $13, $6, $7 

add $14, $8, $13 

 

Finding ILP: 
• Must deal with groups of basic code blocks 

• Common approach: loop-level parallelism 
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– Example: 

– In MIPS (assume $s0 initialized properly): 

 

for (i=1000; i > 0; i--) 

x[i] = x[i] + s; 

Loop: lw $t0, 0($s1) # t0 = array element 

addu $t0, $t0, $s2 # add scalar in $s2 

sw $t0, 0($s1) # store result 

addi $s1, $s1, -4 # decrement pointer 

bne $s1, $0, Loop # branch $s1 != 0 

 

Loop Unrolling: 
 • Technique used to help scheduling (and performance) 

• Copy the loop body and schedule instructions from different iterations of the 

loop  gether 

• MIPS example (from prev. slide): 

 

Loop: lw $t0, 0($s1) # t0 = array element 

addu $t0, $t0, $s2 # add scalar in $s2 

sw $t0, 0($s1) # store result 

lw $t1, -4($s1) 

addu $t1, $t1, $s2 

sw $t1, -4($s1) 

addi $s1, $s1, -8 # decrement pointer 

bne $s1, $0, Loop # branch $s1 != 0 

 

Note the new register & counter adjustment! 

• Previous example, we unrolled the loop once 

– This gave us a second copy 

• Why introduce a new register ($t1)? 

– Antidependence (name dependence) 

• Loop iterations would reuse register $t0 

• No data overlap between loop iterations! 

• Compiler RENAMED the register to prevent a “dependence” 

– Allows for better instruction scheduling and identification of true dependencies  

• In general, you can unroll the loop as much as you want 

– A factor of the loop counter is generally used 

– Limited advantages to unrolling more than a few times 

 

 

Loop Unrolling: Performance: 
• Performance (dis)advantage of unrolling 

– Assume basic 5-stage pipeline 

• Recall lw requires a bubble if value used immediately after 

• For original loop 

– 10 cycles to execute first iteration 
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– 16 cycles to execute two iterations 

• Assuming perfect prediction 

• For unrolled loop 

– 14 cycles to execute first iteration -- without reordering 

• Gain from skipping addi, bne 

– 12 cycles to execute first iteration -- with reordering 

• Put lw together, avoid bubbles after ea 

 

Loop Unrolling: Limitations 
• Overhead amortization decreases as loop is  unrolled more 

• Increase in code size 

– Could be bad if ICache miss rate increases 

• Register pressure 

– Run out of registers that can be used in renaming process 

–  

Exploiting ILP: Deep Pipelines 
Deep Pipelines 

• Increase pipeline depth beyond 5 stages 

– Generally allows for higher clock rates 

– UltraSparc III -- 14 stages 

– Pentium III -- 12 stages 

– Pentium IV -- 22 stages 

• Some versions have almost 30 stages 

– Core 2 Duo -- 14 stages 

– AMD Athlon -- 9 stages 

– AMD Opteron -- 12 stages 

– Motorola G4e -- 7 stages 

– IBM PowerPC 970 (G5) -- 14 stages 

• Increases the number of instructions executing at the same time 

• Most of the CPUs listed above also issue multiple instructions per cycle 

 

Issues with Deep Pipelines 
• Branch (Mis-)prediction 

– Speculation: Guess the outcome of an instruction to remove it as a dependence 

to other instructions 

– Tens to hundreds of instructions “in flight” 

– Have to flush some/all if a branch is mispredicted 

• Memory latencies/configurations 

– To keep latencies reasonable at high clock rates, need fast caches  

– Generally smaller caches are faster 

– Smaller caches have lower hit rates 

• Techniques like way prediction and prefetching can help lower latencies 

 

Optimal Pipelining Depths 
• Several papers published on this topic 

– Esp. the 29th International Symposium on Computer Architecture (ISCA) 
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– Intel had one pushing the depth to 50 stages 

– Others have shown ranges between 15 and 40 

– Most of the variation is due to the intended workload 

Exploiting ILP: Multiple Issue Computers 

 
Multiple Issue Computers 

 

• Benefit 

– CPIs go below one, use IPC instead (instructions/cycle) 

– Example: Issue width = 3 instructions, Clock = 3GHz 

• Peak rate: 9 billion instructions/second, IPC = 3 

• For our 5 stage pipeline, 15 instructions “in flight” at any given time 

• Multiple Issue types 

– Static 

• Most instruction scheduling is done by the compiler 

– Dynamic (superscalar) 

• CPU makes most of the scheduling decisions 

• Challenge: overcoming instruction  dependencies 

– Increased latency for loads 

– Control hazards become worse 

• Requires a more ambitious design 

– Compiler techniques for scheduling 

– Complex instruction decoding logic 

 

Exploiting ILP:Multiple Issue Computers Static Scheduling 

 
Instruction Issuing 

• Have to decide which instruction types can issue in a cycle 

– Issue packet: instructions issued in a single clock cycle 

– Issue slot: portion of an issue packet 

• Compiler assumes a large responsibility for hazard checking, scheduling, etc.  

Static Multiple Issue 

For now, assume a “souped-up” 5-stage MIPS pipeline that can issue a packet with: 

– One slot is an ALU or branch instruction 

One slot is a load/store instruction 
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–  

 

Static Multiple Issue 
 

 
 

Static Multiple Issue Scheduling 
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Static Mult. Issue w/Loop Unrolling 

 
 

 

Static Mult. Issue w/Loop Unrolling 
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Exploiting ILP:Multiple Issue Computers Dynamic Scheduling 

 
Dynamic Multiple Issue Computers 

• Superscalar computers 

• CPU generally manages instruction issuing and ordering 

– Compiler helps, but CPU dominates  

• Process 

– Instructions issue in-order 

– Instructions can execute out-of-order 

• Execute once all operands are ready 

– Instructions commit in-order 

• Commit refers to when the architectural register file is updated (current completed state 

of program 

Aside: Data Hazard Refresher 

• Two instructions (i and j), j follows i in program order 

• Read after Read (RAR) 

• Read after Write (RAW) 

– Type: 

– Problem: 

• Write after Read (WAR) 

– Type: 

– Problem: 

• Write after Write (WAW) 

– Type: Problem: 

Superscalar Processors 
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• Register Renaming 

– Use more registers than are defined by the architecture 

• Architectural registers: defined by ISA 

• Physical registers: total registers 

– Help with name dependencies 

• Antidependence 

– Write after Read hazard 

• Output dependence 

– Write after Write hazard 

 

Tomasulo’s Superscalar Computers 

 
• R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”, 

IBM J. of Research and Development, Jan. 1967  

• See also: D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360 

model 91: Machine philosophy and instruction-handling,” IBM J. of Research and  

evelopment, Jan. 1967 

• Allows out-of-order execution 

• Tracks when operands are available 

– Minimizes RAW hazards 

• Introduced renaming for WAW and WAR 

hazards 

Tomasulo’s Superscalar Computers 
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Instruction Execution Process 
• Three parts, arbitrary number of cycles/part 

• Above does not allow for speculative execution 

• Issue (aka Dispatch) 

– If empty reservation station (RS) that matches instruction, send to RS with operands  

rom register file and/or know which functional unit will send operand 

– If no empty RS, stall until one is available 

 

Rename registers as appropriate 

Instruction Execution Process 

• Execute 

– All branches before instruction must be resolved 

• Preserves exception behavior 

– When all operands available for an instruction, send it to functional unit 

• Monitor common data bus (CDB) to see if result is needed by RS entry 

– For non-load/store reservation stations 

• If multiple instructions ready, have to pick one to send to functional unit 

– For load/store 

• Compute address, then place in buffer 

• Loads can execute once memory is free 

• Stores must wait for value to be stored, then execute 

 

Write Back 

– Functional unit places on CDB 

• Goes to both register file and reservation stations 

– Use of CDB enables forwarding for RAW hazards 

– Also introduces a latency between result and use of a value 

 

 

Reservation Stations 

 
• Require 7 fields 

– Operation to perform on operands (2 operands) 

– Tags showing which RS/Func. Unit will be producing operand (or zero if operand 

available/unnecessary) 

– Two source operand values 

– A field for holding memory address calculation data 

• Initially, immediate field of instruction 

• Later, effective address 

– Busy 

• Indicates that RS and its functional unit are busy 

• Register file support 

– Each entry contains a field that identifies which RS/func. unit will be writing into this 

entry (or blank/zero if noone will be writing to it) Limitation of Current Machine 

 

Instruction execution requires branches to be resolved 
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• For wide-issue machines, may issue one branch per clock cycle!  

• Desire: 

– Predict branch direction to get more ILP 

– Eliminate control dependencies 

• Approach: 

– Predict branches, utilize speculative instruction execution  

– Requires mechanisms for “fixing” machine when speculation is incorrect 

Tomasulo’s w/Hardware Speculation 

 

 

 
 

Tomasulo’s w/HW Speculation 

 
• Key aspects of this design 

– Separate forwarding (result bypassing) from actual instruction completion 

• Assuming instructions are executing speculatively 

• Can pass results to later instructions, but prevents instruction from performing updates 

that can’t be “undone” 

– Once instruction is no longer speculative it can update register file/memory 

• New step in execution sequence: instruction commit 

• Requires instructions to wait until they can commit Commits still happen in order 

Reorder Buffer (ROB) 

 

Instructions hang out here before committing 

• Provides extra registers for RS/RegFile 
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– Is a source for operands 

• Four fields/entry 

– Instruction type 

• Branch, store, or register operation (ALU & load) 

– Destination field 

• Register number or store address 

– Value field 

• Holds value to write to register or data for store 

– Ready field 

• Has instruction finished executing? 

• Note: store buffers from previous version now in ROB 

Instruction Execution Sequence 

• Issue 

– Issue instruction if opening in RS & ROB 

– Send operands to RS from RegFile and/or ROB 

• Execute 

– Essentially the same as before 

• Write Result 

– Similar to before, but put result into ROB 

• Commit (next slide) 

 
Committing Instructions 

Look at head of ROB 

• Three types of instructions 

– Incorrectly predicted branch 

• Indicates speculation was wrong 

• Flush ROB 

• Execution restarts at proper location – Store 

• Update memory 

• Remove store from ROB 

– Everything else 

• Update registers 

• Remove instruction from ROB 
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RUU Superscalar Computers 

 
Modeling tool Simple Scalar implements an RUU style processor 

– You will be using this tool after Spring Break 

• Architecture similar to speculative Tomasulo’s 

• Register Update Unit (RUU) 

– Controls instructions scheduling and dispatching to functional units 

– Stores intermediate source values for instructions 

– Ensures instruction commit occurs in order! 

– Needs to be of appropriate size 

• Minimum of issue width * number of pipeline stages 

• Too small of an RUU can be a structural hazard! 

• Result bus could be a structural hazard 
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A Real Computer:Intel Pentium 4 

Pentium 4 Die Photo 

 
 

Overview of P4 
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Pentium 4 Pipeline 
 

• See handout for overview of major steps 

• Prescott (90nm version of P4) had 31 pipeline stages 

– Not sure how pipeline is divided up 

–  

 
 

P4: Trace Cache 

 
Non-traditional instruction cache 

• Recall x86 ISA 
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– CISC/VLIW: ugly assembly instructions of varying lengths 

– Hard for HW to decode 

– Ended up translating code into RISC-like microoperations to execute 

• Trace Cache holds sequences of RISC-like micro-ops 

– Less time decoding, more time executing 

– Sequence storage similar to “normal” instruction cache 

 

 

P4: Branch Handling 
 

 

BTBs (Branch Target Buffers) 

– Keep both branch history and branch target addresses 

• Target address is instruction immediately after branch 

– Predict if no entry in BTB for branch 

• Static prediction 

• If a backwards branch, see how far target is from current; if within a threshold, predict 

taken, else predict not taken 

• If a forward branch, predict not taken 

• Also some other rules 

• Front-end BTB is L2 (like) for the trace cache BTB (L1 like)  

 

P4: Execution Core 
• Tomasulo’s algorithm-like 

• Can have up to 126 instructions in-flight 

– Max of 3 micro-ops sent to core/cycle 

– Max of 48 loads, 32 stores 

• Send up to 6 instructions to functional units per cycle via 4 ports 

– Port 0: Shared between first fast ALU and FP/Media move scheduler 

– Port 1: Shared between second fast ALU and Complex integer and FP/Media scheduler 

– Port 2: Load 

Port 3: Store 

 

 

P4: Rapid Execution Engine 

Execute 6 micro-ops/cycle 

– Simple ALUs run at 2x machine clock rate 

– Can generate 4 simple ALU results/cycle 

– Do one load and one store per cycle 

• Loads involve data speculation 

– Assume that most loads hit L1 and Data Translation Look-aside Buffer (DTLB) 

– Get data into execution, while doing address check 

• Fix if L1 miss occurred 

 

P4: Memory Tricks 

Smartworld.asia 16 Smartzworld.com



Advance Computer Architecture                                                                                           10CS74 
 

Department of CSE, SJBIT Page 66 
 

 
• Store-to-Load Forwarding 

– Stores must wait to write until non-speculative 

– Loads occasionally want data from store location 

– Check both cache and Store Forwarding Buffer 

• SFB is where stores are waiting to be written 

– If hit when comparing load address to SFB address, use SFB data, not cache data 

• Done on a partial address 

• Memory Ordering Buffer 

– Ensures that store-to-load forwarding was correct 

• If not, must re-execute load 

– Force forwarding 

• Mechanism for forwarding in case addresses are misaligned 

• MOB can tell SFB to forward or not 

– False forwarding 

• Fixes partial address match between load and SFB 

 

P4: Specs for Rest of Slides 

 
• For one running at 3.2 GHz 

– From grad arch book 

• L1 Cache 

– Int: Load to use - 4 cycles 

– FP: Load to use - 12 cycles 

– Can handle up to 8 outstanding load misses 

• L2 Cache (2 MB) 

18 cycle access time 
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P4: Branch Prediction 

 
 

P4: Misspeculation Percentages 

 

 
 

P4: Data Cache Miss Rates 
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P4: CPI 

 
P4 vs. AMD Opteron 
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P4 vs. Opteron: Real Performance 
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