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UNIT - IV

INSTRUCTION -LEVEL PARALLELISM - 2:
Exploiting ILP using multiple issue and static scheduling
Exploiting ILP using dynamic scheduling

Multiple issue and speculation

Advanced Techniques for instruction delivery and Speculation

The Intel Pentium 4 as example. 7 Hours
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UNIT IV
INSTRUCTION -LEVEL PARALLELISM -2

Whatis ILP?

* Instruction Level Parallelism
— Number of operations (instructions) that can be performed in parallel
* Formally, two instructions are parallel if they can execute simultaneously in a pipeline
of arbitrary depth without causing any stalls assuming that the pipeline has sufficient
resources
— Primary techniques used to exploit ILP
* Deep pipelines
 Multiple issue machines
» Basic program blocks tend to have 4-8 instructions between branches
— Little ILP within these blocks
— Must find ILP between groups of blocks

Example Instruction Sequences

* Independent instruction sequence:

lw $10, 12($1)
sub $11, $2, $3
and $12, $4, $5
or $13, $6, $7
add $14, $8, $9

* Dependent instruction sequence:

lw $10, 12(S$1)
sub $11, $2, $10
and $12, $11, $10
or $13, $6, $7
add $14, $8, $13

Finding ILP:
» Must deal with groups of basic code blocks
» Common approach: loop-level parallelism
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— Example:
— In MIPS (assume $s0 initialized properly):

for (i=1000; i > 0; i--)

X[i] = x[i] +s;

Loop: Iw $t0, 0($s1) # t0 = array element
addu $t0, $t0, $s2 # add scalar in $s2

sw $t0, 0($s1) # store result

addi $s1, $s1, -4 # decrement pointer
bne $s1, $0, Loop # branch $s1 !=0

Loop Unrolling:
* Technique used to help scheduling (and performance)
» Copy the loop body and schedule instructions from different iterations of the
loop gether
* MIPS example (from prev. slide):

Loop: Iw $t0, 0($s1) # t0 = array element
addu $t0, $t0, $s2 # add scalar in $s2
sw $t0, O($s1) # store result
Iw $t1, -4($s1)
addu $t1, $t1, $s2
sw $t1, -4($s1)
addi $s1, $s1, -8 # decrement pointer
bne $s1, $0, Loop # branch $s1 =0

Note the new register & counter adjustment!

* Previous example, we unrolled the loop once

— This gave us a second copy

* Why introduce a new register ($t1)?

— Antidependence (name dependence)

* Loop iterations would reuse register $t0

* No data overlap between loop iterations!

» Compiler RENAMED the register to prevent a “dependence”
— Allows for better instruction scheduling and identification of true dependencies

* In general, you can unroll the loop as much as you want
— A factor of the loop counter is generally used

— Limited advantages to unrolling more than a few times

Loop Unrolling: Performance:
* Performance (dis)advantage of unrolling
— Assume basic 5-stage pipeline
* Recall lw requires a bubble if value used immediately after
* For original loop
— 10 cycles to execute first iteration
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— 16 cycles to execute two iterations
» Assuming perfect prediction
* For unrolled loop
— 14 cycles to execute first iteration -- without reordering
* Gain from skipping addi, bne
— 12 cycles to execute first iteration -- with reordering
* Put lw together, avoid bubbles after ea

Loop Unrolling: Limitations
* Overhead amortization decreases as loop is unrolled more
* Increase in code size
— Could be bad if ICache miss rate increases
* Register pressure
— Run out of registers that can be used in renaming process

Exploiting ILP: Deep Pipelines
Deep Pipelines
* Increase pipeline depth beyond 5 stages
— Generally allows for higher clock rates
— UltraSparc 111 -- 14 stages
— Pentium I1I -- 12 stages
— Pentium IV -- 22 stages
» Some versions have almost 30 stages
— Core 2 Duo -- 14 stages
— AMD Athlon -- 9 stages
— AMD Opteron -- 12 stages
— Motorola G4e -- 7 stages
— IBM PowerPC 970 (G5) -- 14 stages
* Increases the number of instructions executing at the same time
» Most of the CPUs listed above also issue multiple instructions per cycle

Issues with Deep Pipelines
* Branch (Mis-)prediction
— Speculation: Guess the outcome of an instruction to remove it as a dependence
to other instructions
— Tens to hundreds of instructions “in flight”
— Have to flush some/all if a branch is mispredicted
* Memory latencies/configurations
— To keep latencies reasonable at high clock rates, need fast caches
— Generally smaller caches are faster
— Smaller caches have lower hit rates
* Techniques like way prediction and prefetching can help lower latencies

Optimal Pipelining Depths
* Several papers published on this topic
— Esp. the 29th International Symposium on Computer Architecture (ISCA)




Smartworld.asia 5 Smartzworld.com

Advance Computer Architecture 10CS74

— Intel had one pushing the depth to 50 stages
— Others have shown ranges between 15 and 40
— Most of the variation is due to the intended workload

Exploiting ILP: Multiple Issue Computers

Multiple Issue Computers

* Benefit
— CPlIs go below one, use IPC instead (instructions/cycle)
— Example: Issue width = 3 instructions, Clock = 3GHz
* Peak rate: 9 billion instructions/second, IPC = 3
* For our 5 stage pipeline, 15 instructions “in flight” at any given time
* Multiple Issue types
— Static
* Most instruction scheduling is done by the compiler
— Dynamic (superscalar)
* CPU makes most of the scheduling decisions
» Challenge: overcoming instruction dependencies
— Increased latency for loads
— Control hazards become worse
* Requires a more ambitious design
— Compiler techniques for scheduling
— Complex instruction decoding logic

Exploiting ILP:Multiple Issue Computers Static Scheduling

Instruction Issuing
* Have to decide which instruction types can issue in a cycle
— Issue packet: instructions issued in a single clock cycle
— Issue slot: portion of an issue packet
« Compiler assumes a large responsibility for hazard checking, scheduling, etc.
Static Multiple Issue
For now, assume a “souped-up” 5-stage MIPS pipeline that can issue a packet with:
— One slot is an ALU or branch instruction
One slot is a load/store instruction
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Instruction Type Pipeline Stages
ALT or Branch instruction IF | ID | EX | MEM WEB
Load or Store instruction IF | ID | EX | MEM WEB
ALTU or Branch instruction IF ID EX MEM WB
Load or Store instruction IF D EX MEM WB
ALT or Branch instruction IF D EX MEM | WB
Load or Store instruction IF D EX MEM | WB

Static Multiple Issue
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add $1,%2,$3
add $5.%2,%2
load $4, $3(100)
load $3, $2(100)
sub $2, $5, %3
add $2, $2, $4

~._

Becomes

Cycle | ALU/Branch Instruction

Load/Store Instruction

1

2

th

Static Mult. Issue w/Loop Unrolling

Original loop schedule for a 2-issue MIPS

ALU/Branch

Load/Store

Cycle

Loop:

| [ b | e

Unrolled (once) loop schedule for a 2-issue MIPS

ALU/Branch

Load/Store

Cycle

Loop: lw 5t0, 0(5s1)
addu &tO, §t0, §s2
sw 5t0, 0($s1)
addi $s1, §s1, -4
bne $sl1, 50, Loop

Loop: lw S5tD, 0(§sl)
addu 5t0, 5t0, 582
sw 5t0, 0($s1)
1w st1, —4(ssl)
addu $t1, st1l, §s2
sw st1, —4(ss1)
addi $s1, §s1, -8
bne $s1, 50, Loop

Laoop:

1

B - N P - WO

Static Mult. Issue w/Loop Unrolling
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roop: ;:du :tﬁ: :éﬁ?léu Unroll loop 3x, (4 iterations total) and schedule
sw  §t0, 0($sl) for a 2-issue MIPS
addi $s1, &§s1, -4
bne §sl, §0, Loop ALU/Branch Load/Store Cycle
Loop: Loop: !
2
3
4
5
6
i
9
10
1
2

Exploiting ILP:Multiple Issue Computers Dynamic Scheduling

Dynamic Multiple Issue Computers
* Superscalar computers
» CPU generally manages instruction issuing and ordering
— Compiler helps, but CPU dominates
* Process
— Instructions issue in-order
— Instructions can execute out-of-order
* Execute once all operands are ready
— Instructions commit in-order
» Commit refers to when the architectural register file is updated (current completed state
of program
Aside: Data Hazard Refresher
» Two instructions (i and j), j follows i in program order
* Read after Read (RAR)
* Read after Write (RAW)
— Type:
— Problem:
» Write after Read (WAR)
— Type:
— Problem:
» Write after Write (WAW)
— Type: Problem:
Superscalar Processors
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* Register Renaming
— Use more registers than are defined by the architecture
* Architectural registers: defined by ISA
* Physical registers: total registers
— Help with name dependencies
» Antidependence
— Write after Read hazard
* Output dependence
— Write after Write hazard

Tomasulo’s Superscalar Computers

* R. M. Tomasulo, “An Efficient Algorithm for Exploiting Multiple Arithmetic Units”,
IBM J. of Research and Development, Jan. 1967

* See also: D. W. Anderson, F. J. Sparacio, and R. M. Tomasulo, “The IBM System/360
model 91: Machine philosophy and instruction-handling,” IBM J. of Research and
evelopment, Jan. 1967

» Allows out-of-order execution

* Tracks when operands are available

— Minimizes RAW hazards

* Introduced renaming for WAW and WAR

hazards

Tomasulo’s Superscalar Computers
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Instruction Execution Process
* Three parts, arbitrary number of cycles/part
» Above does not allow for speculative execution
* Issue (aka Dispatch)
— If empty reservation station (RS) that matches instruction, send to RS with operands
rom register file and/or know which functional unit will send operand
— If no empty RS, stall until one is available

Rename registers as appropriate

Instruction Execution Process

* Execute

— All branches before instruction must be resolved

* Preserves exception behavior

— When all operands available for an instruction, send it to functional unit
» Monitor common data bus (CDB) to see if result is needed by RS entry
— For non-load/store reservation stations

« If multiple instructions ready, have to pick one to send to functional unit
— For load/store

» Compute address, then place in buffer

* Loads can execute once memory is free

* Stores must wait for value to be stored, then execute

Write Back

— Functional unit places on CDB

* Goes to both register file and reservation stations

— Use of CDB enables forwarding for RAW hazards

— Also introduces a latency between result and use of a value

Reservation Stations

* Require 7 fields

— Operation to perform on operands (2 operands)

— Tags showing which RS/Func. Unit will be producing operand (or zero if operand
available/unnecessary)

— Two source operand values

— A field for holding memory address calculation data

» Initially, immediate field of instruction

* Later, effective address

— Busy

* Indicates that RS and its functional unit are busy

* Register file support

— Each entry contains a field that identifies which RS/func. unit will be writing into this
entry (or blank/zero if noone will be writing to it) Limitation of Current Machine

Instruction execution requires branches to be resolved
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» For wide-issue machines, may issue one branch per clock cycle!
* Desire:
— Predict branch direction to get more ILP
— Eliminate control dependencies
* Approach:
— Predict branches, utilize speculative instruction execution
— Requires mechanisms for “fixing” machine when speculation is incorrect
Tomasulo’s w/Hardware Speculation

This shows T
From instriction wnil
only FP and
load/store
Y
parts of -
Feg 4 Dat:
II'lﬂChiIlf nstrusction L — 1
g e
FP ragisters
Load-stare
operations
+‘ Opearand -
Address unit Floating-point buses
oparations ]
} Load butters 3
Operation bus
Store 3 L ' r P
address 2 1 Fisarvaion F
] — 1 stafions
dala Address

Memory unit [FP adders FP multipiars
— f . o
data Common data bus (CDB)
-

. g

Tomasulo’s w/HW Speculation

* Key aspects of this design

— Separate forwarding (result bypassing) from actual instruction completion

» Assuming instructions are executing speculatively

» Can pass results to later instructions, but prevents instruction from performing updates
that can’t be “undone”

— Once instruction is no longer speculative it can update register file/memory

» New step in execution sequence: instruction commit

* Requires instructions to wait until they can commit Commits still happen in order
Reorder Buffer (ROB)

Instructions hang out here before committing
* Provides extra registers for RS/RegFile
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— Is a source for operands

* Four fields/entry

— Instruction type

* Branch, store, or register operation (ALU & load)
— Destination field

* Register number or store address

— Value field

* Holds value to write to register or data for store

— Ready field

* Has instruction finished executing?

* Note: store buffers from previous version now in ROB
Instruction Execution Sequence

* Issue

— Issue instruction if opening in RS & ROB

— Send operands to RS from RegFile and/or ROB

* Execute

— Essentially the same as before

» Write Result

— Similar to before, but put result into ROB

» Commit (next slide)

Committing Instructions

Look at head of ROB

* Three types of instructions

— Incorrectly predicted branch

» Indicates speculation was wrong
* Flush ROB

* Execution restarts at proper location — Store
» Update memory

* Remove store from ROB

— Everything else

« Update registers

* Remove instruction from ROB
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RUU Superscalar Computers

| Instruction Fetch Unit |

r

Register
File

Decode and Izsue Unit [*
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Result Bus (CDB)

Modeling tool Simple Scalar implements an RUU style processor

— You will be using this tool after Spring Break
» Architecture similar to speculative Tomasulo’s

* Register Update Unit (RUU)

— Controls instructions scheduling and dispatching to functional units

— Stores intermediate source values for instructions

— Ensures instruction commit occurs in order!
— Needs to be of appropriate size

* Minimum of issue width * number of pipeline stages
* Too small of an RUU can be a structural hazard!

» Result bus could be a structural hazard
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A Real Computer:Intel Pentium 4
Pentium 4 Die Photo
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Overview of P4
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Boggs et al, “The Microarchitecture of the Intel Pentium 4 Processor
on 90nm Technology,” Intel Tech. J, Vol. 8, Num. 1, 2004

Pentium 4 Pipeline

* See handout for overview of major steps
* Prescott (90nm version of P4) had 31 pipeline stages

Not sure how pipeline is divided up

Basic Pentium lll Processor Misprediction Pipeline

1
Fotch

2

Basic Pentium 4 Processor Misprediction Pipeline

o B B8

TCNxt i TC Fotchi Drivel

3

Fetch Decode Decode

& 5 6

7 8

9 10

Decode Rename ROB Rd Rdy/Sch Dispatch Exec

4 5] 6 7 8 10 11 12 13 14 15 1% 17 18 "W
Wiloe Mename Owe Sch S0 Sch Disp Omp RF RF Ex Pua; Dvive

Drive stages - Move data; limited/no useful work

P4: Trace Cache

Non-traditional instruction cache

* Recall x86 ISA
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— CISC/VLIW: ugly assembly instructions of varying lengths

— Hard for HW to decode

— Ended up translating code into RISC-like microoperations to execute
* Trace Cache holds sequences of RISC-like micro-ops

— Less time decoding, more time executing

— Sequence storage similar to “normal” instruction cache

P4: Branch Handling

BTBs (Branch Target Buffers)

— Keep both branch history and branch target addresses

» Target address is instruction immediately after branch

— Predict if no entry in BTB for branch

» Static prediction

« If a backwards branch, see how far target is from current; if within a threshold, predict
taken, else predict not taken

* [f a forward branch, predict not taken

* Also some other rules
* Front-end BTB is L2 (like) for the trace cache BTB (L1 like)

P4: Execution Core

* Tomasulo’s algorithm-like

* Can have up to 126 instructions in-flight

— Max of 3 micro-ops sent to core/cycle

— Max of 48 loads, 32 stores

» Send up to 6 instructions to functional units per cycle via 4 ports

— Port 0: Shared between first fast ALU and FP/Media move scheduler

— Port 1: Shared between second fast ALU and Complex integer and FP/Media scheduler
— Port 2: Load

Port 3: Store

P4: Rapid Execution Engine

Execute 6 micro-ops/cycle

— Simple ALUs run at 2x machine clock rate

— Can generate 4 simple ALU results/cycle

— Do one load and one store per cycle

* Loads involve data speculation

— Assume that most loads hit L1 and Data Translation Look-aside Buffer (DTLB)
— Get data into execution, while doing address check

* Fix if L1 miss occurred

P4: Memory Tricks
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» Store-to-Load Forwarding

— Stores must wait to write until non-speculative

— Loads occasionally want data from store location

— Check both cache and Store Forwarding Buffer

» SFB is where stores are waiting to be written

— If hit when comparing load address to SFB address, use SFB data, not cache data
* Done on a partial address

* Memory Ordering Buffer

— Ensures that store-to-load forwarding was correct

* If not, must re-execute load

— Force forwarding

» Mechanism for forwarding in case addresses are misaligned
* MOB can tell SFB to forward or not

— False forwarding

* Fixes partial address match between load and SFB

P4: Specs for Rest of Slides

* For one running at 3.2 GHz

— From grad arch book

* L1 Cache

— Int: Load to use - 4 cycles

— FP: Load to use - 12 cycles

— Can handle up to 8 outstanding load misses
* L2 Cache (2 MB)

18 cycle access time
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P4: Branch Prediction
* Graph results from subset of SPEC 2000 Benchmarks
— Integer: gzip, vpr, gcc, mcf, crafty
* 168 branches/1000 instructions
— FP: wupwise, swim, mgrid, applu, mesa
* 48 branches/1000 instructions
ozip
wpr
gee
crafty
wupwise
mgrid
applu

mMasa

[¥] 1 2 3 4 5 & 7 a ] 10 1 12 13 14
Branch mispradicthons per 1000 instructions

P4: Misspeculation Percentages

* For micro-ops
gzip

WRr

goe

met

crafty
wupwise
awim
mgrid

applu

mesa

01500 02000 02500 03000 0.3500 04000  0.4500

Misspeculation percentage
i 00T Elasader, (ne Al rights ressrved

0.0000 0.0500  0.1000

P4: Data Cache Miss Rates
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* This L2 is 2MB, not 1MB (as in paper you read)
* Note scale is 10x for .1 as compared to L2

U?ip

crafty
WLEWIGE
BWim
mgrid
applu

mesd

0 20 40 &0 80 100 120 140 1860 180 200
L1 data cache missas par 1000 instruciions

gzip
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mcf
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mesa

0 2 4 G g 1 12 14 18 18 20
L2 data cache missss per 1000 instnictions

£2007 Elsmier, Inc. All nghts reserced

P4: CPI

* Read values from lines, not sure why X-axis is scaled like itis

* 1.29 micro-ops per IA-32 instruction

geip
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g
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P4 vs. AMD Opteron
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Smartzworld.com
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* Architecturally similar
— Opteron pipeline much shorter (12 stages)
— P4 seems to have a larger cache

* CPI comparison below (Opteron at 2.6GHz)
— Opteron CPI lower by factor of 1.27

gap

vpr

gee

mef

crafty

WLpWise

SWIm

Pantium 4

migrid B A0 Opteron
appiu

masa

000 100 200 300 400 500 600 F.00 B00 900 1000 11.00 12.00 13.00 14,00

P4 vs. Opteron: Real Performance

* Clock rates (2005 comparisomn)
— P4: 3.8 GHz
— Opteron: 2.8 GHz
*  Opteron performance advantage of about 1.08
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g " Pentium 4
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