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MEMORY HIERARCHY 
 

The memory unit is an essential component in any digital computer since it is needed for storing programs and 

data. A very small computer with a limited application may be able to fulfill its intended task without the need 

of additional storage capacity. Most general-purpose computers would run more efficiently if they were 

equipped with additional storage beyond the capacity of the main memory. There is just not enough space in 

one memory unit to accommodate all the programs used in a typical computer. Moreover, most computer users 

accumulate and continue to accumulate large amounts of data-processing software. Not all accumulated 

information is needed by the processor at the same time. Therefore, it is more economical to use low-cost 

storage devices to serve as a backup for storing the information that is not currently used by the CPU. The 

memory unit that communicates directly with the CPU is called the main memory. Devices that provide backup 

storage are called auxiliary memory. The most common auxiliary memory devices used in computer systems  

are magnetic disks and tapes. They are used for storing system programs, large data files, and other backup 

information. Only programs and data currently needed by the processor reside in main memory. All other 

information is stored in auxiliary memory and transferred to main memory when needed. 

 
The total memory capacity of a computer can be visualized as being a hierarchy of components. The memory 

hierarchy system consists of tall storage devices employed in a computer system from the slow but high- 

capacity auxiliary memory to a relatively faster main memory, to an even smaller and faster cache memory 

accessible to the high-speed processing logic. Figure illustrates the components in a typical memory hierarchy. 

At the bottom of the hierarchy are the relatively slow magnetic tapes used to store removable files. Next are the 

magnetic disks used as backup storage. The main memory occupies a central position by being able to 

communicate directly with the CPU and with auxiliary memory devices through an I/O processor. When 

programs not residing in main memory are needed by the CPU, they are brought in from auxiliary memory. 

Programs not currently needed in main memory are transferred into auxiliary memory to provide space for 

currently used programs and data. 

 
A special very-high speed memory called a cache is sometimes used to increase the speed of processing by 

making current programs and data available to the CPU at a rapid rate. The cache memory is employed in 

computer systems to compensate for the speed differential between main memory access time and processor 

logic. CPU logic is usually faster than main memory access time, with the result that processing speed is limited 

primarily by the speed of main memory. A technique used to compensate for the mismatch in operating speeds 

is to employ in extremely fast, small cache between the CPU and main memory whose access time is close to 

processor logic clock cycle time. The cache is used for storing segments of programs currently being executed  

in the CPU and temporary data frequently needed in the present calculations by 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in



 

Figure - Memory hierarchy in a computer system. 

 

 

Making programs and data available at a rapid rate, it is possible to increase the performance rate of the 

computer. While the I/O processor manages data transfers between auxiliary memory and main memory, the 

cache organization is concerned with the transfer of information between main memory and CPU. Thus each is 

involved with a different level in the memory hierarchy system. The reason for having two or three levels of 

memory hierarchy is economics. As the storage capacity of the memory increases, the cost per bit for storing 

binary information decreases and the access time of the memory becomes longer. The auxiliary memory has a 

large storage capacity, is relatively inexpensive, but has low access speed compared to main memory. The cache 

memory is very small, relatively expensive, and has very high access speed. Thus as the memory access speed 

increases, so does its relative cost. The overall goal of using a memory hierarchy is to obtain the highest-possible 

average access speed while minimizing the total cost of the entire memory system. 

 
While the I/O processor manages data transfers between auxiliary memory and main memory, the 

cache organization is concerned with the transfer of information between main memory and CPU. Thus each is 

involved with a different level in the memory hierarchy system. The reason for having two or three levels of 

memory hierarchy is economics. As the storage capacity of the memory increases, the cost per bit for storing 

binary information decreases and the access time of the memory becomes longer. The auxiliary memory has a 

large storage capacity, is relatively inexpensive, but has low access speed compared to main memory. The cache 

memory is very small, relatively expensive, and has very high access speed. Thus as the memory access speed 

increases, so does its relative cost. The overall goal of using a memory hierarchy is to obtain the highest-possible 

average access speed while minimizing the total cost of the entire memory system. 

 
Auxiliary and cache memories are used for different purposes. The cache holds those parts of the 

program and data that are most heavily used, while the auxiliary memory holds those parts that are not presently 

used by the CPU. Moreover, the CPU has direct access to both cache and main memory but not to auxiliary 

memory. The transfer from auxiliary to main memory is usually done by means of direct memory access of large 

blocks of data. The typical access time ratio between cache and main memory is about 1 to 7. For example, a 

typical cache memory may have an access time of 100ns, while main memory access time may be 700ns. 
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Auxiliary memory average access time is usually 1000 times that of main memory. Block size in auxiliary 

memory typically ranges from256 to 2048 words, while cache block size is typically from 1 to 16 words. 

 
Many operating systems are designed to enable the CPU to process a number of independent programs 

concurrently. This concept, called multiprogramming, refers to the existence of two or more programs indifferent 

parts of the memory hierarchy at the same time. In this way it is possible to keep all parts of the computer busy 

by working with several programs in sequence. For example, suppose that a program is being executed in the 

CPU and an I/O transfer is required. The CPU initiates the I/O processor to start executing the transfer. This 

leaves the CPU free to execute another program. In a multiprogramming system, when one program is waiting  

for input or output transfer, there is another program ready to utilize the CPU. 

 
MAIN MEMORY 

 

The main memory is the central storage unit in a computer system. It is a relatively large and fast 

memory used to store programs and data during the computer operation. The principal technology used for the 

main memory is based on semiconductor integrated circuits. Integrated circuit RAM chips are available in two 

possible operating modes, static and dynamic. The static RAM consists essentially of internal flip-flops that store 

the binary information. The stored information remains valid as long as power is applied to unit. The dynamic 

RAM stores the binary information in the form of electric charges that are applied to capacitors. The capacitors 

are provided inside the chip by MOS transistors. The stored charges on the capacitors tend to discharge with time 

and the capacitors must be periodically recharged by refreshing the dynamic memory. Refreshing is done by 

cycling through the words every few milliseconds to restore the decaying charge. The dynamic RAM offers 

reduced power consumption and larger storage capacity in a single memory chip. The static RAM is easier to use 

and has shorted read and write cycles. 

 
Most of the main memory in a general-purpose computer is made up of RAM integrated circuit chips, 

but a portion of the memory may be constructed with ROM chips. Originally, RAM was used to refer to a 

random-access memory, but now it is used to designate a read/write memory to distinguish it from a read-only 

memory, although ROM is also random access. RAM is used for storing the bulk of the programs and data that 

are subject to change. ROM is used for storing programs that are permanently resident in the computer and for 

tables of constants that do not change in value one the production of the computer is completed. 

 
Among other things, the ROM portion of main memory is needed for storing an initial program called 

a bootstrap loader. The bootstrap loader is a program whose function is to start the computer software operating 

when power is turned on. Since RAM is volatile, its contents are destroyed when power is turned off. The 

contents of ROM remain unchanged after power is turned off and on again. The startup of a computer consists of 

turning the power on and starting the execution of an initial program.  Thus   when   power   is   turned   on,    the 
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hardware of the computer sets the program counter to the first address of the bootstrap loader. The bootstrap 

program loads a portion of the operating system from disk to main memory and control is then transferred to the 

operating system, which prepares the computer from general use. 

 
RAM and ROM chips are available in a variety of sizes. If the memory needed for the computer is larger than the 

capacity of one chip, it is necessary to combine a number of chips to form the required memory size. To 

demonstrate the chip interconnection, we will show an example of a 1024 × 8 memory constructed with 128 × 8 

RAM chips and 512 × 8 ROM chips. 

 
RAM AND ROM CHIPS 

 

A RAM chip is better suited for communication with the CPU if it has one or more control inputs that 

select the chip only when needed. Another common feature is a bidirectional data bus that allows the transfer of 

data either from memory to CPU during a read operation or from CPU to memory during a write operation. A 

bidirectional bus can be constructed with three-state buffers. A three-state buffer output can be placed in one of 

three possible states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high-impedance state. The 

logic 1 and 0 are normal digital signals. The high-impedance state behaves like an open circuit, which means that 

the output does not carry a signal and has no logic significance. The block diagram of a RAM chip is shown in Fig. 

The capacity of the memory is 128 words of eight bits (one byte) per word. This requires a 7-bit chip. 
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Fig:Typical Ram 
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The read and write inputs are sometimes combined into one line labeled R/W. When the chip is selected, the two 

binary states in this line specify the two operations or read or write address and an 8-bit bidirectional data bus. 

The read and write inputs specify the memory operation and the two chips select (CS) control inputs are for 

enabling the chip only when it is selected by the microprocessor. The availability of more than one control input 

to select the chip facilitates the decoding of the address lines when multiple chips are used in the microcomputer. 

 
The function table listed in Fig. (b) Specifies the operation of the RAM chip. The unit is in operation 

only when CSI = 1 and CS2 = 0. The bar on top of the second select variable indicates that this input in enabled 

when it is equal to 0. If the chip select inputs are not enabled, or if they are enabled but the read but the read or 

write inputs are not enabled, the memory is inhibited and its data bus is in a high-impedance state. When SC1 = 1 

and CS2 = 0, the memory can be placed in a write or read mode. When the WR input is enabled, the memory 

stores a byte from the data bus into a location specified by the address input lines. When the RD input is enabled, 

the content of the selected byte is placed into the data bus. The RD and WR signals control the memory  

operation as well as the bus buffers associated with the bidirectional data bus. 

 
A ROM chip is organized externally in a similar manner. However, since a ROM can only read, the 

data bus can only be in an output mode. The block diagram of a ROM chip is shown in below Fig. For the same- 

size chip, it is possible to have more bits of ROM occupy less space than in RAM. For this reason, the diagram 

specifies a 512-byte ROM, while the RAM has only 128 bytes. 

 
The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two chip 

select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. Otherwise, the data bus is in a high-impedance 

state. There is no need for a read or write control because the unit can only read. Thus when the chip is enabled 

by the two select inputs, the byte selected by the address lines appears on the data bus. 

 
MEMORY ADDRESS MAP 

 

The designer of a computer system must calculate the amount of memory required for the particular 

application and assign it to either RAM or ROM. The interconnection between memory and processor is then 

established form knowledge of the size of memory needed and the type of RAM and ROM chips available. The 

addressing of memory can be established by means of a table that specifies the memory address assigned to each 

chip. The table, called a memory address map, is a pictorial representation of assigned address space for each 

chip in the system. 

 
To demonstrate with a particular example, assume that a computer system needs 512 bytes of RAM 

and 512 bytes of ROM. The RAM and ROM chips 
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Figure-Typical ROM chip. 
 

To be used are specified in Fig Typical RAM chip and Typical ROM chip. The memory address map for this 

configuration is shown in Table 7-1. The component column specifies whether a RAM or a ROM chip is used. 

The hexadecimal address column assigns a range of hexadecimal equivalent addresses for each chip. The address 

bus lines are listed in the third column. Although there are 16 lines in the address bus, the table shows only 10 

lines because the other 6 are not used in this example and are assumed to be zero. The small x‘s under the  

address bus lines designate those lines that must be connected to the address inputs in each chip. The RAM chips 

have 128 bytes and need seven address lines. The ROM chip has 512 bytes and needs 9 address lines. The x‘s are 

always assigned to the low-order bus lines: lines 1 through 7 for the RAM and lines 1 through 9 for the ROM. It 

is now necessary to distinguish between four RAM chips by assigning to each a different address. For this 

particular example we choose bus lines 8 and 9 to represent four distinct binary combinations. Note that any  

other pair of unused bus lines can be chosen for this purpose. The table clearly shows that the nine low-order bus 

lines constitute a memory space from RAM equal to   
9    

= 512 bytes. The distinction between a RAM and ROM 
2 

address is done with another bus line. Here we choose line 10 for this purpose. When line 10 is 0, the CPU  

selects a RAM, and when this line is equal to 1, it selects the ROM.The equivalent hexadecimal address for each 

chip is obtained forms the information under the address bus assignment. The address bus lines are subdivided 

into groups of four bits each so 

 
TABLE-Memory Address Map for Microprocomputer 
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That each group can be represented with a hexadecimal digit. The first hexadecimal digit represents 

lines 13 to 16 and is always 0. The next hexadecimal digit represents lines 9 to 12, but lines 11 and 12 are always 

0. The range of hexadecimal addresses for each component is determined from the x‘s associated with it. This  

x‘s represent a binary number that can range from an all-0‘s to an all-1‘s value. 

 
MEMORY CONNECTION TO CPU 

 

RAM and ROM chips are connected to a CPU through the data and address buses. The low-order lines 

in the address bus select the byte within the chips and other lines in the address bus select a particular chip 

through its chip select inputs. The connection of memory chips to the CPU is shown in below Fig. This 

configuration gives a memory capacity of 512 bytes of RAM and 512 bytes of ROM. It implements the memory 

map of Table 7-1. Each RAM receives the seven low-order bits of the address bus to select one of 128 possible 

bytes. The particular RAM chip selected is determined from lines 8 and 9 in the address bus. This is done  

through a 2 × 4 decoder whose outputs go to the SCI input in each RAM chip. Thus, when address lines 8 and 9 

are equal to 00, the first RAM chip is selected. When 01, the second RAM chip is selected, and so on. The RD 

and WR outputs from the microprocessor are applied to the inputs of each RAM chip. 

 
The selection between RAM and ROM is achieved through bus line 10. The RAMs are selected when 

the bit in this line is 0, and the ROM when the bit is 1. The other chip select input in the ROM is connected to the 

RD control line for the ROM chip to be enabled only during a read operation. Address bus lines 1 to 9 are 

applied to the input address of ROM without going through the decoder. This assigns addresses 0 to 511 to RAM 

and 512 to 1023 to ROM. The data bus of the ROM has only an output capability, whereas the data bus 

connected to the RAMs can transfer information in both directions. 

 
The example just shown gives an indication of the interconnection complexity that can exist between memory 

chips and the CPU. The more chips that are connected, the more external decoders are required for selection 

among the chips. The designer must establish a memory map that assigns addresses to the various chips from 

which the required connections are determined. 
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Figure -Memory connection to the CPU. 

 

ASSOCIATIVE MEMORY 

 

Many data-processing applications require the search of items in a table stored in memory. An assembler  

program searches the symbol address table in order to extract the symbol‘s binary equivalent. An account  

number may be searched in a file to determine the holder‘s name and account status. The established way to 

search a table is to store all items where they can be addressed in sequence. The search procedure is a strategy for 

choosing a sequence of addresses, reading the content of memory at each address, and comparing the  

information read with the item being searched until a match occurs. 
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The number of accesses to memory depends on the location of the item and the efficiency of the search  

algorithm. Many search algorithms have been developed to minimize the number of accesses while searching for 

an item in a random or sequential access memory. The time required to find an item stored in memory can be 

reduced considerably if stored data can be identified for access by the content of the data itself rather than by an 

address. A memory unit accessed by content is called an associative memory or content addressable memory 

(CAM). This type of memory is accessed simultaneously and in parallel on the basis of data content rather than 

by specific address or location. When a word is written in an associative memory, no address is given,. The 

memory is capable of finding an empty unused location to store the word. When a word is to be read from an 

associative memory, the content of the word, or part of the word, is specified. The memory locaters all words 

which match the specified content and marks them for reading. 

 
Because of its organization, the associative memory is uniquely suited to do parallel searches by data 

association. Moreover, searches can be done on an entire word or on a specific field within a word.  An 

associative memory is more expensive then a random access memory because each cell must have storage 

capability as well as logic circuits for matching its content with an external argument. For this reason, associative 

memories are used in applications where the search time is very critical and must be very short. 

 
HARDWARE ORGANIZATION 

 

The block diagram of an associative memory is shown in below Fig. It consists of a memory array and 

logic from words with n bits per word. The argument register A and key register K each have n bits, one for each 

bit of a word. The match register M has m bits, one for each memory word. Each word in memory is compared  

in parallel with the content of the argument register. The words that match the bits of the argument register set a 

corresponding bit in the match register. After the matching process, those bits in the match register that have  

been set indicate the fact that their corresponding words have been matched. Reading is accomplished by a 

sequential access to memory for those words whose corresponding bits in the match register have been set. 

 
The key register provides a mask for choosing a particular field or key in the argument word. The 

entire argument is compared with each memory word if the key register contains all 1‘s. Otherwise, only those 

bits in the argument that have 1‘s in their corresponding position of the key register are compared. Thus the key 

provides a mask or identifying piece of information which specifies how the reference to memory is made. 
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Figure- Block diagram of associative memory 
 

To illustrate with a numerical example, suppose that the argument register A and the key register K 

have the bit configuration shown below. Only the three leftmost bits of A are compared with memory words 

because K has 1‘s in these positions. 

 

A 101 111100  

K 111 000000 

Word 1 100 111100 no match 

Word 2 101 000001 match 

Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word are 

equal. The relation between the memory array and external registers in an associative memory is shown in 

below Fig. The cells in the array are marked by the letter C with two subscripts. The first subscript gives the 

word number and the second specifies the bit position in the word. Thus cell Cij is the cell for bit j in word i. A 

bit A j in the argument register is compared with all the bits in column j of the array provided that K j = 1. This 

is done for all columns j = 1, 2,…,n. If a match occurs between all the unmasked bits of the argument and the 

bits in word i, the corresponding bit Mi in the match register is set to 1. If one or more unmasked bits of the 

argument and the word do not match, Mi is cleared to 0. 
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Figure -Associative memory of m word, n cells per word 
 
 

 
 

The internal organization of a typical cell Cij is shown in Fig.. 

It consists of Flip-Flop storage element Fij and the circuits for reading, writing, and matching the cell. The 

input bit is transferred into the storage cell during a write operation. The bit stored is read out during a read 

operation. The match logic compares the content of the storage cell with the corresponding unmasked bit of the 

argument and provides an output for the decision logic that sets the bit in Mi. 

 

MATCH LOGIC 
 

The match logic for each word can be derived from the comparison algorithm for two binary numbers. 

First, we neglect the key bits and compare the argument in A with the bits stored in the cells of the words. 

Word i is equal to the argument in A if Aj = Fij for j = 1, 2,…, n. Two bits are equal if they are both 1 or both 

0. The equality of two bits can be expressed logically by the Boolean function 

xj = AjFij + A
' 
F  

'
 

j  ij 
 

Where xj = 1 if the pair of bits in position j are equal; otherwise, xj = 0. 

For a word i to be equal to the argument in a we must have all xj variables equal to 1. This is the condition for 

setting the corresponding match bit Mi to 1. The Boolean function for this condition is 

Mi = x1 x2 x3 … xn And constitutes the AND operation of all pairs of matched bits in a word. 
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j j 

j 2 j 3 j n j 

j j j 

Figure - One cell of associative memory. 

 

We now include the key bit Kj in the comparison logic. The requirement is that if Kj = 0, the corresponding  

bits of Aj and Fij need no comparison. Only when Kj = 1 must they be compared. This requirement is achieved 

by ORing each term with Kj‘ , thus: 

x 
 

xj + K‘j = 

if K =1 
j j 

1 if K = 0 
 

j 
 

When K j = 1, we have K j ‘ = 0 and xj + 0 = xj. When Kj = 0, then Kj‘ = 1 xj + 1 = 1. A term (xj + 

Kj‘) will be in the 1 state if its pair of bitsis not compared. This is necessary because each term is ANDed with 

all other terms so that an output of 1 will have no effect. The comparison of the bits has an effect only when Kj 

= 1. 

The match logic for word i in an associative memory can now be expressed by the following Boolean function: 

Mi = (x1 + K 
'  

) (x   + K 
'  

) (x   + K 
'  

) …. (x   + K 
'  

) 

Each term in the expression will be equal to 1 if its corresponding K 
'  

= 0. ifK  = 1, the term will be either 0 or 

1 depending on the value of xj. A match will occur and Mi will be equal to 1 if all terms are equal to 1. 

If we substitute the original definition of xj. The Boolean function above can be expressed as follows: 

Mi = ∏ (AjFij + A 
'  

F 
'  

+ K 
'  

) 

j=1 

Where ∏ is a product symbol designating the AND operation of all n terms. We need m such functions, one 
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for each word i = 1, 2, 3, …., m. 

The circuit for catching one word is shown in below Fig. Each cell requires two AND gates and one 

OR gate. The inverters for Aj and Kj are needed once for each column and are used for all bits in the column. 

The output of all OR gates in the cells of the same word go to the input of a common AND gate to generate the 

match signal for Mi.Mi will be logic 1 if a catch occurs and 0 if no match occurs. Note that if the key register 

contains all 0‘s, output Mi will be a 1 irrespective of the value of A or the word. This occurrence must be 

avoided during normal operation. 

 

READ OPERATION 
 

If more than one word in memory matches the unmasked argument field, all the matched words will 

have 1‘s in the corresponding bit position of the catch register. It is then necessary to scan the bits of the match 

register on eat a time. The matched words are read in sequence by applying a read signal to each word line 

whose corresponding Mi bit is a 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure - Match logic for one word of associative memory 
 

In most applications, the associative memory stores a table with no two identical items under a given key. In 

this case, only one word may match the unmasked argument field. By connecting output Mi directly to the read 

line in the same word position (instead of the M register), the content of the matched word will be presented 

automatically at the output lines and no special read command signal is needed. Furthermore, if we exclude 

words having zero content, an all-zero output will indicate that no match occurred and that the searched item is 

not available in memory. 
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WRITE OPERATION 
 

An associative memory must have a write capability for storing the information to be 

searched. Writing in an associative memory can take different forms, depending on the application. If the  

entire memory is loaded with new information at once prior to a search operation then the writing can be done 

by addressing each location in sequence. This will make the device a random-access memory for writing and a 

content addressable memory for reading. The advantage here is that the address for input can be decoded as in 

a random-access memory. Thus instead of having m address lines, one for each word in memory, the number 

of address lines can be reduced by the decoder to d lines, where m = 2
d
. 

 
If unwanted words have to be deleted and new words inserted one at a time, there is a need for a special 

register to distinguish between active and inactive words. This register, sometimes called a tag register, would 

have as many bits as there are words in the memory. For every active word stored in memory, the 

corresponding bit in the tag register is set to 1. A word is deleted from memory by clearing its tag bit to 0. 

Words are stored in memory by scanning the tag register until the first 0 bit is encountered. This gives the first 

available inactive word and a position for writing a new word. After the new word is stored in memory it is 

made active by setting its tag bit to 1. An unwanted word when deleted from memory can be cleared to all 0‘s 

if this value is used to specify an empty location. Moreover, the words that have a tag bit of 0 must be  masked 

(together with the Kj bits) with the argument word so that only active words are compared. 

 

CACHE MEMORY 

 

Analysis of a large number of typical programs has shown that the references, to memory at 

any given interval of time tend to be confined within a few localized areas in memory. The phenomenon is 

known as the property of locality of reference. The reason for this property may be understood considering that 

a typical computer program flows in a straight-line fashion with program loops and subroutine calls 

encountered frequently. When a program loop is executed, the CPU repeatedly refers to the set of instructions 

in memory that constitute the loop. Every time a given subroutine is called, its set of instructions is fetched 

from memory. Thus loops and subroutines tend to localize the references to memory for fetching instructions. 

To a lesser degree, memory references to data also tend to be localized. Table-lookup procedures repeatedly 

refer to that portion in memory where the table is stored. Iterative procedures refer to common memory 

locations and array of numbers are confined within a local portion of memory. The result of all these 

observations is the locality of reference property, which states that over a short interval of time, the addresses 

generated by a typical program refer to a few localized areas of memory repeatedly, while the remainder of 

memory is accessed relatively frequently. 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in



If the active portions of the program and data are placed in a fast small memory, the average memory 

access time can be reduced, thus reducing the total execution time of the program. Such a fast small memory is 

referred to as a cache memory. It is placed between the CPU and main memory as illustrated in below Fig. The 

cache memory access time is less than the access time of main memory by a factor of 5 to 10. The cache is the 

fastest component in the memory hierarchy and approaches the speed of CPU components. 

 
The fundamental idea of cache organization is that by keeping the most frequently accessed 

instructions and data in the fast cache memory, the average memory access time will approach the access time 

of the cache. Although the cache is only a small fraction of the size of main memory, a large fraction of 

memory requests will be found in the fast cache memory because of the locality of reference property of 

programs. 

 
The basic operation of the cache is as follows. When the CPU needs to access memory, the cache is 

examined. If the word is found in the cache, it is read from the fast memory. If the word addressed by the CPU 

is not found in the cache, the main memory is accessed to read the word. A block of words containing the one 

just accessed is then transferred from main memory to cache memory. The block size may vary from one word 

(the one just accessed) to about 16 words adjacent to the one just accessed. In this manner, some data are 

transferred to cache so that future references to memory find the required words in the fast cache memory. 

 
The performance of cache memory is frequently measured in terms of a quantity called hit ratio. When 

the CPU refers to memory and finds the word in cache, it is said to produce a hit. If the word is not found in 

cache, it is in main memory and it counts as a miss. The ratio of the number of hits divided by the total CPU 

references to memory (hits plus misses) is the hit ratio. The hit ratio is best measured experimentally by 

running representative programs in the computer and measuring the number of hits and misses during a given 

interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio verifies the validity of the 

locality of reference property. 

 
The average memory access time of a computer system can be improved considerably by use of a 

cache. If the hit ratio is high enough so that most of the time the CPU accesses the cache instead of main 

memory, the average access time is closer to the access time of the fast cache memory. For example, a 

computer with cache access time of 100 ns, a main memory access time of 1000 ns, and a hit ratio of 0.9 

produces an average access time of 200 ns. This is a considerable improvement over a similar computer 

without a cache memory, whose access time is 1000 ns. 

 
The basic characteristic of cache memory is its fast access time. Therefore, very little or no time must 

be wasted when searching for words in the cache. The transformation of data from main memory to cache 

memory is referred to as a mapping process. Three types of mapping procedures are of practical interest  when 
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considering the organization of cache memory: 
 

1. Associative mapping 

2. Direct mapping 

3. Set-associative mapping 
 

To helping the discussion of these three mapping procedures we will use a specific example of a 

memory organization as shown in below Fig. The main memory can store 32K words of 12 bits each. The 

cache is capable of storing 512 of these words at any given time. For every word stored in cache, there is a 

duplicate copy in main memory. 

 
The CPU communicates with both memories. It first sends a 15-bit address to cache. If there is a hit, 

the CPU accepts the 12 -bit data from cache. If there is a miss, the CPU reads the word from main memory and 

the word is then transferred to cache. 

 

 

Figure - Example of cache memory 
 

ASSOCIATIVE MAPPING 

The fasters and most flexible cache organization use an associative memory. This organization is 

illustrated in below Fig. The associative memory stores both the address and content (data) of the memory 

word. This permits any location in cache to store any word from main memory. The diagram shows three 

words presently stored in the cache. The address value of 15 bits is shown as a five-digit octal number and its 

corresponding 12-bit word is shown as a four-digit octal number. A CPU address of 15 bits is placed in the 

argument register and the associative memory is searched for a matching address. If the address is found, the 

corresponding 12-bit data is read 
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Argument register 

Address 

Figure-Associative mapping cache (all numbers in octal) 

CPU address (15 bits) 

 

 

 

 

Data 

0 1 0 0 0 3 4 5 0 

0 2 7 7 7 6 7 1 0 

2 2 3 4 5 1 2 3 4 

  

 
 

And sent to the CPU. If no match occurs, the main memory is accessed for the word. The address-data pair is 

then transferred to the associative cache memory. If the cache is full, an address−data pair must be displaced to 

make room for a pair that is needed and not presently in the cache. The decision as to what pair is replaced is 

determined from the replacement algorithm that the designer chooses for the cache. A simple procedure is to 

replace cells of the cache in round-robin order whenever a new word is requested from main memory. This 

constitutes a first-in first-out (FIFO) replacement policy. 

 

DIRECT MAPPING 

Associative memories are expensive compared to random-access memories because of the added logic 

associated with each cell. The possibility of using a random-access memory for the cache is investigated in  

Fig. The CPU address of 15 bits is divided into two fields. The nine least significant bits constitute the index 

field and the remaining six bits from the tag and the index bits. The number of bits in the index field is equal to 

the number of address bits required to access the cache memory. 

In the general case, there are 2
k 

words in cache memory and 2
n 

words in main memory. The n-bit 

memory address is divided into two fields: k bits for the index field and n − k bits for the tag field. The direct 

mapping cache organization uses the n-bit address to access the main memory and the k-bit index to access the 

cache. The internal organization of the words in the cache memory is as shown in Fig. (b). Each word in cache 

consists of the data word and its associated tag. When a new word is first brought into the cache, the tag bits 

are stored alongside the data bits. When the CPU generates a memory request, the index field is used for the 

address to access the cache. 
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The tag field of the CPU address is compared with the tag in the word read from the cache. If the two 

tags match, there is a hit and the desired data word is in cache. If the two tags match, there is a hit and the 

desired data word is in cache. If there is no match, there is a miss and the required word is read from main 

memory. It is then stored in the cache together with the new tag, replacing the previous value. The 

disadvantage of direct mapping is that the hit ratio can droop considerably if two or more words whose 

addresses have the same index but different tags are accessed repeatedly. However, this possibility is 

minimized by the fact that such words are relatively far apart in the address range (multiples of 512 locations  

in this example). 

 

To see how the direct-mapping organization operates, consider the numerical example shown in Fig. 

The word at address zero is presently stored in the cache (index = 000, tag = 00, data = 1220). Suppose that the 

CPU now wants to access the word at address 02000. The index address is 000, so it is sued to access the 

cache. The two tags are then compared. The cache tag is 00 but the address tag is 02, which does not produce a 

match. Therefore, the main memory is accessed and the data word 5670 is transferred to the CPU. The cache 

word at index address 000 is then replaced with a tag of 02 and data of 5670. 

 

 
Fig-Direct mapping cache organization 
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The direct-mapping example just described uses a block size of one word. The same organization but 

using a block size of 8 words is shown in below Fig. The index 

 

 

Block 0 
 

 

Block 1 
 

 

 

 

 

 
Block 

Index Tag Data 6 6 3 

Index 

 

 

 

Field is now divided into two parts: the block field and the word field. In a 512-word cache there are 

64 block of 8 words each, since 64 × 8 = 512. The block number is specified with a 6-bit field and the word 

within the block is specified with a 3-bit field. The tag field stored within the cache is common to all eight 

words of the same block. Every time a miss occurs, an entire block of eight words must be transferred from 

main memory to cache memory. Although this takes extra time, the hit ratio will most likely improve with a 

larger block size because of the sequential nature of computer programs. 

 
SET-ASSOCIATIVE MAPPING 

It was mentioned previously that the disadvantage of direct mapping is that two words with the same 

index in their address but with different tag values cannot reside in cache memory at the same time. A third 

type of cache organization, called set-associative mapping, is an improvement over the direct-mapping 

organization in that each word of cache can store two or more words of memory under the same index address. 

Each data word is stored together with its tag and the number of tag-data items in one word of cache is said to 

form a set. An example of a set-associative cache organization for a set size of two is shown in Fig. Each index 

address refers to two data words and their associated tags. Each tag requires six bits and each data word has 12 

bits, so the word length is 2(6 + 12) = 36 bits. An index address of nine bits can accommodate 512 words.  

Thus the size of cache memory is 512 × 36. It can accommodate 1024 words of main memory since each word 

of cache contains two data words. In general, a set-associative cache of set size k will accommodate k words of 

main memory in each word of cache. 

000 

 
007 

0 1 

 
0 1 

3 4 5 0 

 
6 5 7 8 

010 

 
017 

  

 

Tag Block Word 

 

770 0 2  
63   

777 0 2 6 7 1 0 
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777 

 

Figure- Two-way set-associative mapping cache. 

The octal numbers listed in above Fig. are with reference to the main memory content illustrated in 

Fig.(a). The words stored at addresses 01000 and 02000 of main memory are stored in cache memory at index 

address 000. Similarly, the words at addresses 02777 and 00777 are stored in cache at index address 777. 

When the CPU generates a memory request, the index value of the address is used to access the cache. The tag 

field of the CPU address is then compared with both tags in the cache to determine if a catch occurs. The 

comparison logic is done by an associative search of the tags in the set similar to an associative memory  

search: thus the name ―set-associative‖. The hit ratio will improve as the set size increases because more words 

with the same index but different tag can reside in cache. However, an increase in the set size increases the 

number of bit s in words of cache and requires more complex comparison logic. 

 
 

When a miss occurs in a set-associative cache and the set is full, it is necessary to replace one of the 

tag-data items with a new value. The most common replacement algorithms used are: random replacement, 

first-in, first out (FIFO), and least recently used (LRU). With the random replacement policy the control 

chooses one tag-data item for replacement at random. The FIFO procedure selects for replacement the item  

that has been in the set the longest. The LRU algorithm selects for replacement the item that has been least 

recently used by the CPU. Both FIFO and LRU can be implemented by adding a few extra bits in each word of 

cache. 

 
WRITING INTO CACHE 

 
An important aspect of cache organization is concerned with memory write requests. When the CPU 

finds a word in cache during read operation, the main memory is not involved in the transfer. However, if the 

operation is a write, there are two ways that the system can proceed. 

0 1 3 4 5 0  0 2 5 6 7 0 

     

 6 7 1 0  0 0 2 3 4 0 
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The simplest and most commonly used procedure is to up data main memory with every memory  

write operation, with cache memory being updated in parallel if it contains the word at the specified address. 

This is called the write-through method. This method has the advantage that main memory always contains the 

same data as the cache,. This characteristic is important in systems with direct memory access transfers. It 

ensures that the data residing in main memory are valid at tall times so that an I/O device communicating 

through DMA would receive the most recent updated data. 

 
 

The second procedure is called the write-back method. In this method only the cache location is 

updated during a write operation. The location is then marked by a flag so that later when the words are 

removed from the cache it is copied into main memory. The reason for the write-back method is that during the 

time a word resides in the cache, it may be updated several times; however, as long as the word remains in the 

cache, it does not matter whether the copy in main memory is out of date, since requests from the word are 

filled from the cache. It is only when the word is displaced from the cache that an accurate copy need be 

rewritten into main memory. Analytical results indicate that the number of memory writes in a typical program 

ranges between 10 and 30 percent of the total references to memory. 

 

CACHE INITIALIZATION 

One more aspect of cache organization that must be taken into consideration is the problem of 

initialization. The cache is initialized when power is applied to the computer or when the main memory is 

loaded with a complete set of programs from auxiliary memory. After initialization the cache is considered to 

be empty, built in effect it contains some non-valid data. It is customary to include with each word in cache a 

valid bit to indicate whether or not the word contains valid data. 

The cache is initialized by clearing all the valid bits to 0. The valid bit of a particular cache word is set 

to 1 the first time this word is loaded from main memory and stays set unless the cache has to be initialized 

again. The introduction of the valid bit means that a word in cache is not replaced by another word unless the 

valid bit is set to 1 and a mismatch of tags occurs. If the valid bit happens to be 0, the new word automatically 

replaces the invalid data. Thus the initialization condition has the effect of forcing misses from the cache until 

it fills with valid data. 

 
VIRTUAL MEMORY 

 
In a memory hierarchy system, programs and data are brought into main memory as they are needed 

by the CPU. Virtual memory is a concept used in some large computer systems that permit the user to  

construct programs as though a large memory space were available, equal to the totality of auxiliary memory. 

Each address that is referenced by the CPU goes through an address mapping from the so-called virtual address 
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to a physical address in main memory. Virtual memory is used to give programmers the illusion that they have 

a very large memory at their disposal, even though the computer actually has a relatively small main memory. 

A virtual memory system provides a mechanism for translating program-generated addresses into correct main 

memory locations. This is done dynamically, while programs are being executed in the CPU. The translation  

or mapping is handled automatically by the hardware by means of a mapping table. 

 

ADDRESS SPACE AND MEMORY SPACE 
 

An address used by a programmer will be called a virtual address, and the set of such addresses the 

address space. An address in main memory is called a location or physical address. The set of such locations is 

called the memory space. Thus the address space is the set of addresses generated by programs as they 

reference instructions and data; the memory space consists of the actual main memory locations directly 

addressable for processing. In most computers the address and memory spaces are identical. The address space 

is allowed to be larger than the memory space in computers with virtual memory. 

 
 

As an illustration, consider a computer with a main -memory capacity of 32K words (K = 1024). 

Fifteen bits are needed to specify a physical address in memory since 32K = 2
15        

Suppose that the computer 

has available auxiliary memory for storing 2
20 

= 1024K words. Thus auxiliary memory has a capacity for 

storing information equivalent to the capacity of 32 main memories. Denoting the address space by N and the 

memory space by M, we then have for this example N = 1024K and M = 32K. 

 

In a multiprogramming computer system, programs and data are transferred to and from auxiliary 

memory and main memory based on demands imposed by the CPU. Suppose that program 1 is currently being 

executed in the CPU. Program 1 and a portion of its associated data re moved from auxiliary memory into  

main memory as shown in Fig. Portions of programs and data need not be in contiguous locations in memory 

since information is being moved in and out, and empty spaces may be available in scattered locations in 

memory. 

In a virtual memory system, programmers are told that they have the total address space at their 

disposal. Moreover, the address field of the instruction code has a sufficient number of bits to specify all  

virtual addresses. In our example, the address field of an instruction code will consist of 20 bits but physical 

memory addresses must be specified with only 15 bits. Thus CPU will reference instructions and data with a 

20-bit address, but the information at this address must be taken from physical memory because access to 

auxiliary storage for individual words will be prohibitively long. (Remember 
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Fig-Relation between address and memory space in a virtual memory system 
 

 
That for efficient transfers, auxiliary storage moves an entire record to the main memory). A table is 

then needed, as shown in Fig, to map a virtual address of 20 bits to a physical address of 15 bits. The mapping 

is a dynamic operation, which means that every address is translated immediately as a word is referenced by 

CPU. 

The mapping table may be stored in a separate memory as shown in Fig. or in main memory. In the 

first case, an additional memory unit is required as well as one extra memory access time. In the second case, 

the table 

 
Figure - Memory table for mapping a virtual address. 

 
 

Virtual address 

 
 

Takes space from main memory and two accesses to memory are required with the program running at half 

speed. A third alternative is to use an associative memory as explained below. 

 

 

 
Main 

memory 
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mapping 
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address 
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ADDRESS MAPPING USING PAGES 
 

 
The table implementation of the address mapping is simplified if the information in the address space 

and the memory space are each divided into groups of fixed size. The physical memory is broken down into 

groups of equal size called blocks, which may range from 64 to 4096 words each. The term page refers to 

groups of address space of the same size. For example, if a page or block consists of 1K words, then, using the 

previous example, address space is divided into 1024 pages and main memory is divided into 32 blocks. 

Although both a page and a block are split into groups of 1K words, a page refers to the organization of  

address space, while a block refers to the organization of memory space. The programs are also considered to 

be split into pages. Portions of programs are moved from auxiliary memory to main memory in records equal 

to the size of a page. The term ―page frame‖ is sometimes used to denote a block. 

 
 

Consider a computer with an address space of 8K and a memory space of 4K. If we split each into 

groups of 1K words we obtain eight pages and four blocks as shown in Fig. At any given time, up to four  

pages of address space may reside in main memory in any one of the four blocks. 

 
 

The mapping from address space to memory space is facilitated if each virtual address is considered to 

be represented by two numbers: a page number address and a line within the page. In a computer with 2
p  

words per page, p bits are used to specify a line address and the remaining high-order bits of the virtual address 

specify the page number. In the example of Fig, a virtual address has 13 bits. Since each page consists of 2
10 

= 

1024 words, the high-order three bits of a virtual address will specify one of the eight pages and the low-order 

10 bits give the line address within the page. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure - Memory table in a paged system. 

 
The word to the main memory buffer register ready to be used by the CPU. If the presence bit in the 
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1 0 1 Line number 

Page no. 

word read from the page table is 0, it signifies that the content of the word referenced by the virtual address 

does not reside in main memory. A call to the operating system is then generated to fetch the required page 

from auxiliary memory and place it into main memory before resuming computation. 

 
 

ASSOCIATIVE MEMORY PAGE TABLE 
 

A random-access memory page table is inefficient with respect to storage utilization. In the example  

of below Fig. we observe that eight words of memory are needed, one for each page, but at least four words 

will always be marked empty because main memory cannot accommodate more than four blocks. In general, 

system with n pages and m blocks would require a memory-page table of n locations of which up to m blocks 

will be marked with block numbers and all others will be empty. As a second numerical example, consider an 

address space of 1024K words and memory space of 32K words. If each page or block contains 1K words, the 

number of pages is 1024 and the number of blocks 32. The capacity of the memory-page table must be 1024 

words and only 32 locations may have a presence bit equal to 1. At any given time, at least 992 locations will 

be empty and not in use. A more efficient way to organize the page table would be to construct it with a 

number of words equal to the number of blocks in main memory. In this way the size of the memory is reduced 

and each location is fully utilized. This method can be implemented by means of an associative memory with 

each word in memory containing a page number together with its corresponding block number The page field 

in each word is compared with the page number in the virtual address. If a match occurs, the word is read from 

memory and its corresponding block number is extracted. 

Figure -An associative memory page table. 

 
Virtual address 

 

 

 

Argument register 

 

Key register 
 

 

 

 

Associative memory 
 

 

 

Page no. Block no . 

1  1   1 0  0 

0 0 1 1 1 

0 1 0 0 0 

1 0 1 0 1 

1 1 0 1 0 

 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in



Consider again the case of eight pages and four blocks as in the example of Fig. We replace the 

random access memory-page table with an associative memory of four words as shown in Fig. Each entry in 

the associative memory array consists of two fields. The first three bits specify a field from storing the page 

number. The last two bits constitute a field for storing the block number. The virtual address is placed in the 

argument register. The page number bits in the argument are compared with all page numbers in the page field 

of the associative memory. If the page number is found, the 5-bit word is read out from memory. The 

corresponding block number, being in the same word, is transferred to the main memory address register. If no 

match occurs, a call to the operating system is generated to bring the required page from auxiliary memory. 

 
 

PAGE REPLACEMENT 

A virtual memory system is a combination of hardware and software techniques. The memory 

management software system handles all the software operations for the efficient utilization of memory space. 

It must decide (1) which page in main memory ought to be removed to make room for a new page, (2) when a 

new page is to be transferred from auxiliary memory to main memory, and (3) where the page is to be placed  

in main memory. The hardware mapping mechanism and the memory management software together  

constitute the architecture of a virtual memory. 

 
 

When a program starts execution, one or more pages are transferred into main memory and the page 

table is set to indicate their position. The program is executed from main memory until it attempts to reference 

a page that is still in auxiliary memory. This condition is called page fault. When page fault occurs, the 

execution of the present program is suspended until the required page is brought into main memory. Since 

loading a page from auxiliary memory to main memory is basically an I/O operation, the operating system 

assigns this task to the I/O processor. In the meantime, controls transferred to the next program in memory that 

is waiting to be processed in the CPU. Later, when the memory block has been assigned and the transfer 

completed, the original program can resume its operation. 

 
 

When a page fault occurs in a virtual memory system, it signifies that the page referenced by the CPU 

is not in main memory. A new page is then transferred from auxiliary memory to main memory. If main 

memory is full, it would be necessary to remove a page from a memory block to make room for the new page. 

The policy for choosing pages to remove is determined from the replacement algorithm that is used. The goal 

of a replacement policy is to try to remove the page least likely to be referenced in the immediate future. 

Two of the most common replacement algorithms used are the first-in first-out (FIFO) and the least recently 

used (LRU). The FIFO algorithm selects for replacement the page the has been in memory the longest time. 

Each time a page is loaded into memory, its identification number is pushed into a FIFO stack. FIFO will be  

full whenever memory has no more empty blocks. When a new page must be loaded, the page least recently 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in



brought in is removed. The page to be removed is easily determined because its identification number is at the 

top of the FIFO stack. The FIFO replacement policy has the advantage of being easy to implement. It has the 

disadvantages that under certain circum-stances pages are removed and loaded form memory too frequently. 

 
 

The LRU policy is more difficult to implement but has been more attractive on the assumption that the 

least recently used page is a better candidate for removal than the least recently loaded pages in FIFO. The 

LRU algorithm can be implemented by associating a counter with every page that is in main memory. When a 

page is referenced, its associated counter is set to zero. At fixed intervals of time, the counters associated with 

all pages presently in memory are incremented by 1. The least recently used page is the page with the highest 

count. The counters are often called aging registers, as their count indicates their age, that is, how long ago 

their associated pages have been reference. 

 

Redundant Array of Inexpensive Disk(RAID) 

 
RAID (redundant array of independent disks; originally redundant array of inexpensive disks) is a way of 

storing the same data in different places (thus, redundantly) on multiple hard disks. By placing data on 

multiple disks, I/O (input/output) operations can overlap in a balanced way, improving performance. 

Since multiple disks increases the mean time between failures (MTBF), storing data redundantly also 

increases fault tolerance. 

 
A RAID appears to the operating system to be a single logical hard disk. RAID employs the technique of 

disk striping, which involves partitioning each drive's storage space into units ranging from a sector (512 

bytes) up to several megabytes. The stripes of all the disks are interleaved and addressed in order. 

 
In a multi-user system, better performance requires establishing a stripe wide enough to hold the typical 

or maximum size record. This allows overlapped disk I/O across drives. 

 
There are at least nine types of RAID plus a non-redundant array (RAID-0): 

 

 RAID-0: This technique has striping but no redundancy of data. It offers the best 

performance but no fault-tolerance. 

 RAID-1: This type is also known as disk mirroring and consists of at least two drives that 

duplicate the storage of data. There is no striping. Read performance is improved since 

either disk can be read at the same time 
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 RAID-2: This type uses striping across disks with some disks storing error checking and 

correcting (ECC) information. It has no advantage over RAID-3.

 RAID-3: This type uses striping and dedicates one drive to storing parity information. 

The embedded error checking (ECC) information is used to detect errors. Data recovery 

is accomplished by calculating the exclusive OR (XOR) of the information recorded on 

the other drives.

 RAID-4: This type uses large stripes, which means you can read records from any single 

drive

 RAID-5: This type includes a rotating parity array, thus addressing the write limitation in 

RAID-4. Thus, all read and write operations can be overlapped. RAID-5 stores parity 

information but not redundant data (but parity information can be used to reconstruct 

data). RAID-5 requires at least three and usually five disks for the array. It's best for 

multi-user systems in which performance is not critical or which do few write operations.

 RAID-6: This type is similar to RAID-5 but includes a second parity scheme that is 

distributed across different drives and thus offers extremely high fault- and drive-failure 

tolerance.

 RAID-7: This type includes a real-time embedded operating system as a controller, 

caching via a high-speed bus, and other characteristics of a stand-alone computer. One 

vendor offers this system.

 RAID-10: Combining RAID-0 and RAID-1 is often referred to as RAID-10, which offers 

higher performance than RAID-1 but at much higher cost. There are two subtypes: In 

RAID-0+1, data is organized as stripes across multiple disks, and then the striped disk 

sets are mirrored. In RAID-1+0, the data is mirrored and the mirrors are striped.

 RAID-50 (or RAID-5+0): This type consists of a series of RAID-5 groups and striped in 

RAID-0 fashion to improve RAID-5 performance without reducing data protection.

 RAID-53 (or RAID-5+3): This type uses striping (in RAID-0 style) for RAID-3's virtual 

disk blocks. This offers higher performance than RAID-3 but at much higher cost.

 RAID-S (also known as Parity RAID): This is an alternate, proprietary 

method for striped parity RAID from EMC Symmetrix that is no longer in use on current 

equipment. It appears to be similar to RAID-5 with some performance enhancements as 

well as the enhancements that come from having a high-speed disk cache on the disk.
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