
11.Class Time Table

12.Individual Time Table

13. Lecture schedule with methodology being

used/adopted along with tutorial, assignment and

NPTEL class schedule

Micro Plan with dates and closure report

SNO Unit No
Date

Topic Covered
No of

Periods

Teaching
aids used

LCD/OHP/BB

1. UNIT-1 What is a Design Pattern? 1 BB
2. Describing Design Patterns, 1 BB
3. Organizing The Design Catalog 1 BB
4. How Design Patterns Solve Design

Problems
1 BB

5. How To Select A Design Pattern, 1 BB
6. How To Use A Design Pattern 1 BB
7. Design Patterns in Smalltalk MVC 1 BB

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org1

8. The Catalog Of Design Patterns 1 BB/OHP
9. Tutorial class /(NPTEL CLASS) 1 BB
10. Assignment test 1
11. UNIT-2 Designing a Document Editor 1 BB
12. Design problems, Document Structure 1 BB
13. Formatting , Embellishing the User

Interface
1 BB

14. Supporting , Multiple Look and Feel

Standards
1 BB/OHP

15. Supporting Multiple Window Systems 1 BB
16. User Operations Spell Checking And

Hyphenation , Summary
1 BB

17. Tutorial class/(NPTEL CLASS) 1 BB
18. Assignment test 1
19. UNIT-3 Creational patterns 1 BB
20. Abstract Factory 1 BB/OHP
21. Builder, Factory Method 1 BB
22. Prototype 1 BB
23. Singleton 1 BB
24. Discussion Of Creational Patterns 1 BB
25. Tutorial class/(NPTEL CLASS) 1 BB
26. UNIT-5 Structural pattern part-I 1 BB
27. Adapter 1 BB
28. Bridge 1 BB
29. Composite 1 BB/OHP
30. Tutorial class/(NPTEL CLASS) 1 BB
31. Assignment test 1

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org2

32. UNIT-5 Structural pattern part-II 1 BB
33. Decorator 1 BB
34. Acade 1 BB
35. Flyweight 1 BB
36. Proxy. 1 BB/OHP

37. Tutorial class/(NPTEL CLASS) 1 BB
38. Assignment test 1
39. UNIT-6 Behavioral patterns part-I 1 BB
40. Chain Of Responsibility 1 BB
41. Command, 1 BB
42. Interpreter 1 BB
43. Iterator 1 BB/OHP
44. Tutorial class/(NPTEL CLASS) 1 BB
45. Assignment test 1
46. UNIT-7 Behavioral patterns part-II 1 BB
47. Mediator 1 BB
48. Memento 1 BB
49. State , Strategy 1 BB
50. Template, Method 1 BB

51. Visitor, 1 BB
52. Discussion of Behavioral patterns 1 BB
53. Tutorial class/(NPTEL CLASS) 1 BB
54. Assignment test 1
55. UNIT-8 What To Expect From Design Patterns 1 BB
56. A Brief History 1 BB
57. The Pattern Community 1 BB

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org3

58. An Invitation 1 BB
59. A parting Thought 1 BB/OHP
60. Tutorial class/(NPTEL CLASS) 1 BB
61. Assignment test 1 BB
62. Solve University questions 1 BB

Total number of Classes required 62

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org4

15.Detailed Notes

S
l
i
d
e

1

Elements of Reusable

Object-Oriented Software

Design Patterns

Dr. Erich Gamma Richard Helm, Ralph Johnson, John Vlissides

Authors

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org5

S

l

i

d

e

2

Patterns IP-2

INTRODUCTION

UNIT-----------1

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org6

S

l

i

d

e

3

Patterns IP-3

Design patterns describes simple and elegant solutions

to specific problems in object-oriented software design.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org7

S

l

i

d

e

4

Patterns IP-4

Authors definition of Design Patterns

“ The design patterns are descriptions of

communicating objects and classes that are

customized to solve a general design

problem in a particular context”.

OR

 A Design Pattern is essentially a description of a

commonly occurring object-oriented design

problem and how to solve it

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org8

S

l

i

d

e

5

Four essential elements of a pattern

Patterns IP-5

 Pattern Name

 It is a handle we can use to describe a design problem, its
solutions, and consequences in a word or two.

 It gives higher level abstraction.

 Finding good names has been one of the hardest parts of
developing out catalog.

 Problem

 It describes when to apply the pattern.

 It explains the problem and context.

 It describes how to represent algorithms as objects

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org9

S

l

i

d

e

6

Patterns IP-6

 Solution

 It describes the elements that make up the design, the
relationships, responsibilities and collaborations.

 The solution doesn’t describe a particular concrete design or
implementation, because a pattern is like a template that can be
applied in many different situations

 Pattern provides a general arrangement of elements to solve it

 Consequences

 These are the results and trade –offs of applying the pattern

 When describing design decisions, these are critical for
evaluating design alternatives and for understanding the costs
and benefits of applying the pattern.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org10

S

l

i

d

e

7

Patterns IP-7

A design pattern represents a widely accepted solution to a recurring

design problem in OOP

Each design pattern focuses on a particular object-oriented design

problem

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org11

S

l

i

d

e

8

Patterns IP-8

Design Patterns in Smalltalk MVC

The Model/View/Controller (MVC) triad of classes is used to build

user interfaces in Smalltalk-80.

MVC consists of three kinds of objects. The Model is the application

object, the View is its screen presentation, and the Controller defines

the way the user interface reacts to user input

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org12

S

l

i

d

e

9

P-9

The example reflects a design that decouples views from

models

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org13

S

l

i

d

e

1

0

Describing Design patterns

P-10

Each pattern is divided into sections according to the following

template

Pattern Name and Classification

The pattern’s name conveys the essence of the pattern succinctly.

A good name is vital because it becomes the design vocabulary

Intent

A short statement that answers the following questions

 What does the design pattern do?

 What is its rationale and intent?

 What particular design issue or problem does it address?

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org14

S

l

i

d

e

1

1

Patterns IP-11

Also known as

Other names for the pattern, if any

Motivation

A scenario that illustrates a design problem and how the class and

object structures in the pattern solve the problem

Applicability

What are the situations in which the design pattern can be

applied? What are examples of poor designs that the pattern can

address? How can you recognize these situations?

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org15

S

l

i

d

e

1

2

Patterns IP-12

Structure

A graphical representation of the classes in the pattern using a

notation based on the Object Modeling Technique (OMT).

We use interaction diagrams to illustrate sequences of requests

and collaborations between objects.

Participants

The classes and/or objects participating in the design pattern and

their responsibilities

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org16

S

l

i

d

e

1

3

Patterns IP-13

Collaborations

How the participants collaborate to carry out their responsibilities

Consequences

How does the pattern support its objectives? What are the trade-

offs and results of using the pattern? What aspect of system

structure does it let you vary independently?

Implementation

What pitfalls, hints, or techniques should you be aware of when

implementing the pattern? Are there any language –specific issues?

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org17

S

l

i

d

e

1

4

Patterns IP-14

Sample Code

Code fragments that illustrate how you might implement the

pattern in C++ or Smalltalk

Known Uses

Examples of the pattern found in real systems. At least 2 examples

from different domains

Related patterns

What design patterns are closely related to this one? What are the

important differences? With which other patterns should this one

be used?

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org18

S

l

i

d

e

1

5

Patterns

Patterns IP-15

 This book defined 23 patterns, classified into three

categories.

 Creational patterns, which deal with the process of object

creation.

 Structural patterns, which deal primarily with the static

composition and structure of classes and objects.

 Behavioral patterns, which deal primarily with dynamic

interaction among classes and objects.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org19

S

l

i

d

e

1

6

Catalog of Design Patterns

Patterns IP-16

 Creational Patterns
 Abstract Factory

 Builder

 Factory Method

 Prototype

 Singleton

 Structural Patterns
 Adapter

 Bridge

 Composite

 Decorator

 Façade

 Flyweight

 Proxy

 Behavioral Patterns
 Chain of Responsibility

 Command

 Interpreter

 Iterator
 Mediator

 Memento

 Observer

 State

 Strategy

 Template Method

 Visitor

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org20

S

l

i

d

e

1

7

P-17

Organizing the catalog

Scope

Purpose

Creational Structural Behavioral

Class Factory Method Adapter(Class) Interpreter

Template Method

Object Abstract Factory

Builder

Prototype

Singleton

Adapter (Object)

Bridge

Composite

Decorator

Façade

Flyweight

proxy

Chain of

responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

visitor

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org21

S

l

i

d

e

1

8

Patterns IP-18

We classify design patterns by two criteria

Reflects what a pattern does. Specifies whether the pattern

applies primarily to classes or to

objects.

scope
Purpose

Creational

Structural , Behavioral purpose

Class patterns deal with

relationships between

classes and their subclasses.

Object patterns deal with

object relationships, which can be

changed at run-time and are more

dynamic.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org22

S

l

i

d

e

1

9

How design patterns solve design problems

P-19

 1) Finding Appropriate Objects

 An object packages both data and the procedures(methods or

operations) that operate on the data

 An object performs an operation when it receives a request from a

client

 These requests causes an object to execute an operation, operations

are the only way to change an object’s internal data, then object

internal state is said to be encapsulated (i.e. object’s representation

is invisible from the outside).

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org23

S

l

i

d

e

2

0

P-20

 How to Create an object

write problem statement find out nouns and verbs and create
corresponding classes and operations .

 Design patterns help you identify less-obvious

abstractions and the objects that can capture them.

The State (305) pattern represents each state of an entity

as an object.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org24

S

l

i

d

e

2

1

Patterns IP-21

 2) Determining object Granularity

 How do we decide what should be an object?

 Subsystems can be represented as objects (Facade)

 Objects of finest granularity (Flyweight)

 Objects responsibilities can create other objects (Abstract
Factory, Builder)

 3) Specifying object interfaces

 An operation can be specified as operation name, parameters
and its return value is known as signature

 The set of all signatures defined by an object’s operations is
called the interface to the object.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org25

S

l

i

d

e

2

2

P-22

 A type is a name used to denote a particular interface

Eg. Window obj1;

 A type is a subtype of another if its interface contains the interface

of its supertype.

 The runtime association of a request to an object and one of its

operations is known as dynamic binding.

 Dynamic binding lets us to substitute objects that have identical

interfaces for each other at runtime is called as Polymorphism.

Design patterns help you define interfaces by identifying

their key elements and the kinds of data that get sent across

an interface.

A design pattern might also

tell you what not to put in the interface.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org26

S

l

i

d

e

2

3

4) Specifying Object Implementations

Patterns IP-23

 An object’s implementation is defined by its class. The class

specifies the object’s internal data and representation and

defines the operations the object can perform

 Class can be rendered as

Class name

Operation1()

Type operation2() ..

InstanceVariable1

Type

InstanceVariable2 ..

Instantiator instantiatee

Class name

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org27

S

l

i

d

e

2

4

Patterns IP-24

 Class inheritance

Parent Class

Operation()

Sub class

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org28

S

l

i

d

e

2

5

Patterns IP-25

 An abstract class is one whose main purpose is to define a
common interface for its subclass(it defers in implementation to
operations defined in subclass).
 It cannot be instantiated

 The operations that an abstract class declares but doesn’t
implement are called abstract operations.

(the names in italic indicates a class or operation as abstract)

 Classes that are not abstract are called concrete classes.

 A class may override an operation defined by its parent class

 A Mixin class is a class that’s intended to provide an optional
interface or functionality to other classes(it is an abstract class
that can be instantiated).

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org29

S

l

i

d

e

2

6

Patterns IP-26

 Class Vs Interface inheritance

 The difference between object’s class and type is class defines

the object’s internal state and the implementation of its

operations, in contrast type refers to its interface.

 Class inheritance defines an object’s implementation in terms of

another object’s implementation(mechanism for code and

representation sharing), in contrast interface inheritance

describes when an object can be used in place of another.

 Programming to an interface, not an Implementation

 It is the principle of reusable OOD.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org30

S

l

i

d

e

2

7

5) Putting reuse mechanisms to work

P-27

 It is easy to know class, interface, object etc., but applying
them to build flexible, reusable s/w and Design Patterns can
show how

 Inheritance versus Composition
 White-box reuse – with inheritance, the internals of parent

classes are often visible to subclasses (visibility).
 Black-box reuse – object composing, i.e., objects that

composed have well defined interfaces

 Disadvantages with class inheritance
 Change the implementations inherited from parent classes at run-time is

not possible.
 Parent classes often define at least part of their subclasses physical

representation.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org31

S

l

i

d

e

2

8

Patterns IP-28

 Delegation

 It is a way of making composition as powerful for reuse as

inheritance

 The following diagram depicts the Window class

delegating its Area operation to a Rectangle instance

Area()

Width

height

Rectangle
Window

Area()

rectangle

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org32

S

l

i

d

e

2

9

Patterns IP-29

 Advantage of delegation – it makes it easy to compose

behaviors at run-time and to change the way they are

composed

 Disadvantage – it shares with other techniques that make

software more flexible through object composition (I.e.,

understanding s/w, runtime inefficiencies)

 Several design patterns use delegation.

 The State (338), Strategy (349), andVisitor (366)

patterns depend on it.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org33

S

l

i

d

e

3

0

6) Relating run-time and compile time structures

P-30

 compile time structure is static and runtime structure is

dynamic.

 Acquaintance or Association

 Acquaintance implies that an object merely knows of

another object.

 Aggregation

 Aggregation implies that one object owns or is responsible

for another object

 :

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org34

S

l

i

d

e

3

1

P-31

In our diagrams, a plain arrowhead line denotes acquaintance. An

arrowhead line with a diamond at its base denotes aggregation

Many design patterns capture the distinction between compile-time

and run-time structures explicitly.

Composite(183) and Decorator (196) are especially useful for

building complex run-time structures.

Observer (326) involves run-time structures that are often hard to

understand unless you know the pattern

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org35

S

l

i

d

e

3

2

7) Designing for change

P-32

 A design that doesn't take change into account risks major
redesign in the future.

 We must consider how the system might need to change over its
lifetime

 These changes leads to class redefinition and reimplementation,
client modification, and retesting

 Some common causes of redesign
 Creating an object by specifying a class explicitly. (Abstract Factory,

Factory Method, Prototype)
 Dependence on hardware and software platform. (Chain of

responsibility, Command)
 Dependence on object representations or implementations. (Abstract

Factory, Bridge)
 Algorithmic dependencies
 Tight coupling. etc.,

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org36

S

l

i

d

e

3

3

Role played by Design patterns

Patterns IP-33

 Application Programs

 When building application program such as a document editor
or spreadsheet then internal reuse, maintainability, and
extensions are high priorities.

design patterns makes it easy to have all these without any side
effects.

 Toolkits

 A toolkit is a set of related and reusable classes designed to
provide useful, general-purpose functionality.

 Frameworks

 A framework is a set of cooperating classes that makeup a
reusable design for a specific class of software.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org37

S

l

i

d

e

3

4

How to select a Design Pattern

Patterns IP-34

 Consider how design patterns solve design problems.

 Scan intent sections.

 Study how patterns interrelate

 Study patterns of like purpose

 Examine a cause of redesign

 Consider what should be variable in your design.

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org38

S

l

i

d

e

3

5

How to use a Design Pattern

Patterns IP-35

 Read the pattern once through for an overview

 Go back and study the structure, participants, and
collaborations sections.

 Look at the sample code section to see a concrete example of
the pattern in code

 Choose names for pattern participants that are meaningful in
the application context

 Define the classes

 Define application- specific names for operations in the
pattern.

 Implement the operations to carry out the responsibilities
and collaborations in the pattern

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org39

