
Chapter 5

Properties of Regular
Languages

In the previous chapters we have introduced various tools, viz. grammars,
automata, to understand regular languages. Also, we have noted that the
class of regular languages is closed with respect to certain operations like
union, concatenation, Kleene closure. Now, with this information, can we
determine whether a given language is regular or not? If a given language
is regular, then to prove the same we need to use regular expression, regular
grammar, finite automata or Myhill-Nerode theorem. Is there any other way
to prove that a language is regular? The answer is “Yes”. If a given lan-
guage can be obtained from some known regular languages by applying those
operations which preserve regularity, then one can ascertain that the given
language is regular. If a language is not regular, although we have Myhill-
Nerode theorem, a better and more practical tool viz. pumping lemma will
be introduced to ascertain that the language is not regular. If we were some-
how know that some languages are not regular, then again closure properties
might be helpful to establish some more languages that are not regular. Thus,
closure properties play important role not only in proving certain languages
are regular, but also in establishing non-regularity of languages. Hence, we
are indented to explore further closure properties of regular languages.

5.1 Closure Properties

5.1.1 Set Theoretic Properties

Theorem 5.1.1. The class of regular languages is closed with respect to
complement.

94

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 1 jntuworldupdates.org

Proof. Let L be a regular language accepted by a DFA A = (Q, Σ, δ, q0, F).
Construct the DFA A ′ = (Q, Σ, δ, q0, Q − F), that is, by interchanging the
roles of final and nonfinal states of A . We claim that L(A ′) = Lc so that
Lc is regular. For x ∈ Σ∗,

x ∈ Lc ⇐⇒ x 6∈ L

⇐⇒ δ̂(q0, x) 6∈ F

⇐⇒ δ̂(q0, x) ∈ Q− F

⇐⇒ x ∈ L(A ′).

Corollary 5.1.2. The class of regular languages is closed with respect to
intersection.

Proof. If L1 and L2 are regular, then so are Lc
1 and Lc

2. Then their union
Lc

1 ∪ Lc
2 is also regular. Hence, (Lc

1 ∪ Lc
2)

c is regular. But, by De Morgan’s
law

L1 ∩ L2 = (Lc
1 ∪ Lc

2)
c

so that L1 ∩ L2 is regular.

Alternative Proof by Construction. For i = 1, 2, let Ai = (Qi, Σ, δi, qi, Fi) be
two DFA accepting Li. That is, L(A1) = L1 and L(A2) = L2. Set the DFA

A = (Q1 ×Q2, Σ, δ, (q1, q2), F1 × F2),

where δ is defined point-wise by

δ((p, q), a) = (δ1(p, a), δ2(q, a)),

for all (p, q) ∈ Q1 × Q2 and a ∈ Σ. We claim that L(A) = L1 ∩ L2. Using

induction on |x|, first observe that δ̂
(
(p, q), x

)
=

(
δ̂1(p, x), δ̂2(q, x)

)
, for all

x ∈ Σ∗.
Now it clearly follows that

x ∈ L(A) ⇐⇒ δ̂
(
(q1, q2), x

)
∈ F1 × F2

⇐⇒
(
δ̂1(q1, x), δ̂2(q2, x)

)
∈ F1 × F2

⇐⇒ δ̂1(q1, x) ∈ F1 and δ̂2(q2, x) ∈ F2

⇐⇒ x ∈ L1 and x ∈ L2

⇐⇒ x ∈ L1 ∩ L2.

95

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 2 jntuworldupdates.org

Example 5.1.3. Using the construction given in the above proof, we design
a DFA that accepts the language

L = {x ∈ (0 + 1)∗ | |x|0 is even and |x|1 is odd}
so that L is regular. Note that the following DFA accepts the language
L1 = {x ∈ (0 + 1)∗ | |x|0 is even}.

// GFED@ABC?>=<89:;q1

1
­­

0 // GFED@ABCq2

0

gg

1
­­

Also, the following DFA accepts the language L2 = {x ∈ (0+1)∗ | |x|1 is odd}.

// GFED@ABCp1

0
­­

1 // GFED@ABC?>=<89:;p2

1

hh

0
­­

Now, let s1 = (q1, p1), s2 = (q1, p2), s3 = (q2, p1) and s4 = (q2, p2) and
construct the automaton that accepts the intersection of L1 and L2 as shown
below.

// GFED@ABCs1
1

//

0
²²

GFED@ABC?>=<89:;s2

1
vv

0
²²

GFED@ABCs3
1 //

0

EE

GFED@ABCs4

1

hh

0

YY

Further, we note the following regarding the automaton. If an input x takes
the automaton (from the initial state) to the state

1. s1, that means, x has even number of 0′s and even number of 1′s.

2. s2, that means, x has even number of 0′s and odd number of 1′s (as
desired in the current example).

3. s3, that means, x has odd number of 0′s and even number of 1′s.

4. s4, that means, x has odd number of 0′s and odd number of 1′s.

By choosing any combination of states among s1, s2, s3 and s4, appropri-
ately, as final states we would get DFA which accept input with appropriate
combination of 0′s and 1′s. For example, to show that the language

L′ =
{

x ∈ (0 + 1)∗
∣∣∣ |x|0 is even ⇔ |x|1 is odd

}
.

96

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 3 jntuworldupdates.org

is regular, we choose s2 and s3 as final states and obtain the following DFA
which accepts L′.

// GFED@ABCs1
1

//

0
²²

GFED@ABC?>=<89:;s2

1
vv

0
²²

GFED@ABC?>=<89:;s3
1 //

0

EE

GFED@ABCs4

1

hh

0

YY

Similarly, any other combination can be considered.

Corollary 5.1.4. The class of regular languages is closed under set differ-
ence.

Proof. Since L1 − L2 = L1 ∩ Lc
2, the result follows.

Example 5.1.5. The language L = {an | n ≥ 5} is regular. We apply
Corollary 5.1.4 with L1 = L(a∗) and L2 = {ε, a, a2, a3, a4}. Since L1 and L2

are regular, L = L1 − L2 is regular.

Remark 5.1.6. In general, one may conclude that the removal of finitely many
strings from a regular language leaves a regular language.

5.1.2 Other Properties

Theorem 5.1.7. If L is regular, then so is LR = {xR | x ∈ L}.
To prove this we use the following lemma.

Lemma 5.1.8. For every regular language L, there exists a finite automaton
A with a single final state such that L(A) = L.

Proof. Let A = (Q, Σ, δ, q0, F) be a DFA accepting L. Construct B =
(Q ∪ {p}, Σ, δ′, q0, {p}), where p 6∈ Q is a new state and δ′ is given by

δ′(q, a) =

{
δ(q, a), if q ∈ Q, a ∈ Σ
p, if q ∈ F, a = ε.

Note that B is an NFA, which is obtained by adding a new state p to A that
is connected from all the final states of A via ε-transitions. Here p is the
only final state in B and all the final states of A are made nonfinal states.
It is easy to prove that L(A) = L(B).

97

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 4 jntuworldupdates.org

Proof of the Theorem 5.1.7. Let A be a finite automaton with the initial
state q0 and single final state qf that accepts L. Construct a finite automaton
A R by reversing the arcs in A with the same labels and by interchanging
the roles of initial and final states. If x ∈ Σ∗ is accepted by A , then there is
a path q0 to qf labeled x in A . Therefore, there will be a path from qf to q0

in A R labeled xR so that xR ∈ L(A R). Conversely, if x is accepted by A R,
then using the similar argument one may notice that its reversal xR ∈ L(A).
Thus, L(A R) = LR so that LR is regular.

Example 5.1.9. Consider the alphabet Σ = {a0, a1, . . . , a7}, where ai =


b′i
b′′i
b′′′i


 and b′ib

′′
i b
′′′
i is the binary representation of decimal number i, for 0 ≤

i ≤ 7. That is, a0 =




0
0
0


, a1 =




0
0
1


, a2 =




0
1
0


, . . ., a7 =




1
1
1


.

Now a string x = ai1ai2 · · · ain over Σ is said to represent correct binary
addition if

b′i1b
′
i2
· · · b′in + b′′i1b

′′
i2
· · · b′′in = b′′′i1b

′′′
i2
· · · b′′′in .

For example, the string a5a1a6a5 represents correct addition, because 1011+
0010 = 1101. Whereas, a5a0a6a5 does not represent a correct addition, be-
cause 1011 + 0010 6= 1001.

We observe that the language L over Σ which contain all strings that
represent correct addition, i.e.

L = {ai1ai2 · · · ain ∈ Σ∗ | b′i1b
′
i2
· · · b′in + b′′i1b

′′
i2
· · · b′′in = b′′′i1b

′′′
i2
· · · b′′′in},

is regular. Consider the NFA shown in the following.

?>=<89:;765401230

000
­­

011

**

101

JJ

110 // ?>=<89:;1

001

hh

010
··

100

tt

111

TT__>>>>>>>>

Note that the NFA accepts LR∪{ε}. Hence, by Remark 5.1.6, LR is regular.
Now, by Theorem 5.1.7, L is regular, as desired.

Definition 5.1.10. Let L1 and L2 be two languages over Σ. Right quotient
of L1 by L2, denoted by L1/L2, is the language

{x ∈ Σ∗ | ∃y ∈ L2 such that xy ∈ L1}.

98

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 5 jntuworldupdates.org

Example 5.1.11. 1. Let L1 = {a, ab, bab, baba} and L2 = {a, ab}; then
L1/L2 = {ε, bab, b}.

2. For L3 = 10∗1 and L4 = 1, we have L3/L4 = 10∗.

3. Let L5 = 0∗10∗.

(a) L5/0
∗ = L5.

(b) L5/10∗ = 0∗.

(c) L5/1 = 0∗.

4. If L6 = a∗b∗ and L7 = {(anbn)a∗ | n ≥ 0}, then L6/L7 = a∗.

Theorem 5.1.12. If L is a regular language, then so is L/L′, for any lan-
guage L′.

Proof. Let L be a regular language and L′ be an arbitrary language. Suppose
A = (Q, Σ, δ, q0, F) is a DFA which accepts L. Set A ′ = (Q, Σ, δ, q0, F

′),
where

F ′ = {q ∈ Q | δ(q, x) ∈ F, for some x ∈ L′},
so that A ′ is a DFA. We claim that L(A ′) = L/L′. For w ∈ Σ∗,

w ∈ L(A ′) ⇐⇒ δ̂(q0, w) ∈ F ′

⇐⇒ δ̂(q0, wx) ∈ F, for some x ∈ L′

⇐⇒ w ∈ L/L′.

Hence L/L′ is regular.

Note that Σ∗ is a monoid with respect to the binary operation concate-
nation. Thus, for two alphabets Σ1 and Σ2, a mapping

h : Σ∗
1 −→ Σ∗

2

is a homomorphism if, for all x, y ∈ Σ∗
1,

h(xy) = h(x)h(y).

One may notice that to give a homomorphism from Σ∗
1 to Σ∗

2, it is enough to
give images for the elements of Σ1. This is because as we are looking for a
homomorphism one can give the image of h(x) for any x = a1a2 · · · an ∈ Σ∗

1

by
h(a1)h(a2) · · ·h(an).

Therefore, a homomorphism from Σ∗
1 to Σ∗

2 is a mapping from Σ1 to Σ∗
2.

99

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 6 jntuworldupdates.org

Example 5.1.13. Let Σ1 = {a, b} and Σ2 = {0, 1}. Define h : Σ1 −→ Σ∗
2 by

h(a) = 10 and h(b) = 010.

Then, h is a homomorphism from Σ∗
1 to Σ∗

2, which for example assigns the
image 10010010 for the string abb.

We can generalize the concept of homomorphism by substituting a lan-
guage instead of a string for symbols of the domain. Formally, a substitution
is a mapping from Σ1 to P(Σ∗

2).

Example 5.1.14. Let Σ1 = {a, b} and Σ2 = {0, 1}. Define h : Σ1 −→
P(Σ∗

2) by
h(a) = {0n | n ≥ 0}, say L1;
h(b) = {1n | n ≥ 0}, say L2.

Then, h is a substitution. Now, for any string a1a2 · · · an ∈ Σ∗
1, its image

under the above substitution h is

h(a1a2 · · · an) = h(a1)h(a2) · · ·h(an),

the concatenation of languages. For example, h(ab) is the language

L1L2 = {0m1n | m,n ≥ 0} = L(0∗1∗).

Given a substitution h from Σ1 to Σ2 one may naturally define h(L) for
a language L over Σ1 by

h(L) =
⋃
x∈L

h(x).

Example 5.1.15. Consider the substitution h given in Example 5.1.14 and
let L = {anbn | n ≥ 0}. For which,

h(L) =
⋃
x∈L

h(x)

=
⋃
n≥0

h(anbn)

=
⋃
n≥0

n times︷ ︸︸ ︷
h(a) · · ·h(a)

n times︷ ︸︸ ︷
h(b) · · ·h(b)

=
⋃
n≥0

n times︷ ︸︸ ︷
0∗ · · · 0∗

n times︷ ︸︸ ︷
1∗ · · · 1∗

= {0m1n | m,n ≥ 0} = 0∗1∗.

100

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 7 jntuworldupdates.org

Example 5.1.16. Define the substitution h : {a, b} −→ P({0, 1}∗) by

h(a) = the set of strings over {0, 1} ending with 1;
h(b) = the set of strings over {0, 1} starting with 0.

For the language L = {anbm | n,m ≥ 1}, we compute h(L) through regular
expressions described below.

Note that the regular expression for L is a+b+ and that are for h(a) and
h(b) are (0 + 1)∗1 and 0(0 + 1)∗. Now, write the regular expression that is
obtained from the expression of L by replacing each occurrence of a by the
expression of h(a) and by replacing each occurrence of b by the expression of
h(b). That is, from a+b+, we obtain the regular expression

((0 + 1)∗1)+(0(0 + 1)∗)+.

This can be simplified as follows.

((0 + 1)∗1)+(0(0 + 1)∗)+ = ((0 + 1)∗1)∗((0 + 1)∗1)(0(0 + 1)∗)(0(0 + 1)∗)∗

= ((0 + 1)∗1)∗(0 + 1)∗10(0 + 1)∗(0(0 + 1)∗)∗

= (0 + 1)∗10(0 + 1)∗.

The following Theorem 5.1.17 confirms that the expression obtained in this
process represents h(L). Thus, from the expression of h(L), we can conclude
that the language h(L) is the set of all strings over {0, 1} that have 10 as
substring.

Theorem 5.1.17. The class of regular languages is closed under substitu-
tions by regular languages. That is, if h is a substitution on Σ such that h(a)
is regular for each a ∈ Σ, then h(L) is regular for each regular language L
over Σ.

Proof. Let r be a regular expression for language L over Σ, i.e. L(r) = L,
and, for each a ∈ Σ, let ra be a regular expression for h(a). Suppose r′ is the
expression obtained by replacing ra for each occurrence of a (of Σ) in r so
that r′ is a regular expression. We claim that L(r′) = h(L(r)) so that h(L)
is regular. We prove our claim by induction on the number of operations
involved in r.

Assume that the number of operations involved in r is zero. Then there
are three possibilities for r, viz. 1. ∅, 2. ε and 3. a for some a ∈ Σ.

1. If r = ∅, then r′ = ∅ and h(L(∅)) = ∅ so that the result is straight-
forward.

101

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 8 jntuworldupdates.org

2. In case r = ε, r′ = ε and hence we have

h(L(r)) = h({ε}) = {ε} = L(r′).

3. For other case, let r = a, for some a ∈ Σ. Then, r′ = ra so that

h(L(r)) = h({a}) = L(ra) = L(r′).

Hence basis of the induction is satisfied.
For inductive hypothesis, assume L(r′) = h(L(r)) for all those regular

expressions r which have k or fewer operations. Now consider a regular
expression r with k + 1 operations. Then

r = r1 + r2 or r = r1r2 or r = r∗1

for some regular expressions r1 and r2. Note that both r1 and r2 have k or
fewer operations. Hence, by inductive hypothesis, we have

L(r′1) = h(L(r1)) and L(r′2) = h(L(r2)),

where r′1 and r′2 are the regular expressions which are obtained from r1 and
r2 by replacing ra for each a in r1 and r2, respectively.

Consider the case where r = r1 + r2. The expression r′ (that is obtained
from r) is nothing else but replacing each ra in the individual r1 and r2, we
have

r′ = r′1 + r′2.

Hence,

L(r′) = L(r′1 + r′2)

= L(r′1) ∪ L(r′2)

= h(L(r1)) ∪ h(L(r2))

= h(L(r1) ∪ L(r2))

= h(L(r1 + r2))

= h(L(r))

as desired, in this case. Similarly, other two cases, viz. r = r1r2 and r = r∗1,
can be handled.

Hence, the class of regular languages is closed under substitutions by
regular languages.

Corollary 5.1.18. The class of regular languages is closed under homomor-
phisms.

102

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 9 jntuworldupdates.org

Theorem 5.1.19. Let h : Σ1 −→ Σ∗
2 be a homomorphism and L ⊆ Σ∗

2 be
regular. Then, inverse homomorphic image of L,

h−1(L) = {x ∈ Σ∗
1 | h(x) ∈ L}

is regular.

Proof. Let A = (Q, Σ2, δ, q0, F) be a DFA accepting L. We construct a DFA
A ′ which accepts h−1(L). Note that, in A ′, we have to define transitions for
the symbols of Σ1 such that A ′ accepts h−1(L). We compose the homomor-
phism h with the transition map δ of A to define the transition map of A ′.
Precisely, we set A ′ = (Q, Σ1, δ

′, q0, F), where the transition map

δ′ : Q× Σ1 −→ Q

is defined by
δ′(q, a) = δ̂(q, h(a))

for all q ∈ Q and a ∈ Σ1. Note that A ′ is a DFA. Now, for all x ∈ Σ∗
1, we

prove that
δ̂′(q0, x) = δ̂(q0, h(x)).

This gives us L(A ′) = h−1(L), because, for x ∈ Σ∗
1,

x ∈ h−1(L) ⇐⇒ h(x) ∈ L

⇐⇒ δ̂(q0, h(x)) ∈ F

⇐⇒ δ̂′(q0, x) ∈ F

⇐⇒ x ∈ L(A ′).

We prove our assertion by induction on |x|. For basis, suppose |x| = 0. That
is x = ε. Then clearly,

δ̂′(q0, x) = q0 = δ̂(q0, ε) = δ̂(q0, h(x)).

Here h(ε) = ε, because h is a homomorphism. Further, by definition of δ′,
we have

δ̂′(q0, a) = δ′(q0, a) = δ̂(q0, h(a)),

for all a ∈ Σ∗
1, so that the assertion is true for |x| = 1 also. For inductive

hypothesis, assume
δ̂′(q0, x) = δ̂(q0, h(x))

103

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 10 jntuworldupdates.org

for all x ∈ Σ∗
1 with |x| = k. Let x ∈ Σ∗

1 with |x| = k and a ∈ Σ1. Now,

δ̂′(q0, xa) = δ̂′(δ̂′(q0, x), a)

= δ̂′(δ̂(q0, h(x)), a) (by inductive hypothesis)

= δ′(δ̂(q0, h(x)), a)

= δ̂(δ̂(q0, h(x)), h(a)) (by definition of δ′)
= δ̂(q0, h(x)h(a))

= δ̂(q0, h(xa)). (by the property of homomorphism)

Hence the result.

Example 5.1.20. Suppose L ⊆ (0 + 1)∗ is a regular language. Now we
observe that the language

L′ = {a1b1 · · · anbn ∈ (0 + 1)∗ | a1 · · · an ∈ L and ai = 0 iff bi = 1}

is regular. For instance, define

f : {0, 1} −→ {0, 1}∗

by f(0) = 01 and f(1) = 10 so that f is a homomorphism. Now note that

f(L) = {f(x) | x ∈ L}
= {f(a1 · · · an) | a1 · · · an ∈ L}
= {f(a1) · · · f(an) | a1 · · · an ∈ L}
= {a1b1 · · · anbn | a1 · · · an ∈ L and ai = 0 iff bi = 1}
= L′

Being homomorphic image of a regular language, L′ is regular.

5.2 Pumping Lemma

Theorem 5.2.1 (Pumping Lemma). If L is an infinite regular language,
then there exists a number κ (associated to L) such that for all x ∈ L with
|x| ≥ κ, x can be written as uvw satisfying the following:

1. v 6= ε, and

2. uviw ∈ L, for all i ≥ 0.

104

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 11 jntuworldupdates.org

Proof. Let A = (Q, Σ, δ, q0, F) be a DFA accepting L. Let |Q| = κ. Since L
is infinite, there exists a string x = a1a2 · · · an in L with n ≥ κ, where ai ∈ Σ.
Consider the accepting sequence of x, say

q0, q1, . . . , qn

where, for 0 ≤ i ≤ n − 1, δ(qi, ai+1) = qi+1 and qn ∈ F . As there are only
κ states in Q, by pigeon-hole principle, at least one state must be repeated
in the accepting sequence of x. Let qr = qs, for 0 ≤ r < s ≤ n. Write
u = a1 · · · ar, v = ar+1 · · · as and w = as+1 · · · an; so that x = uvw. Note
that, as r < s, we have v 6= ε. Now we will prove that uviw ∈ L, for all
i ≥ 0.

q q q q q

q q

q q
a

a

a a

a
nn−1s+1r

s−1r+1

r−110 a
1

r

r+1
s

s+1

n

Figure 5.1: Pumping Sequence

For a given i ≥ 0, uviw = a1 · · · ar(ar+1 · · · as)
ias+1 · · · an. Since qr = qs,

we see that there is a computation for uviw in A , as given below:

(q0, uviw) |−−* (qr, v
iw)

|−−* (qs, v
i−1w)

= (qr, v
i−1w)

|−−* (qs, v
i−2w)

...

|−−* (qs, w)

|−−* qn

Thus, for i ≥ 0, uviw ∈ L.

Remark 5.2.2. If L is finite, then by choosing κ = 1 + max{|x| | x ∈ L}
one may notice that L vacuously satisfies the pumping lemma, as there is no
string of length greater than or equal to κ in L. Thus, the pumping lemma
holds good for all regular languages.

105

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 12 jntuworldupdates.org

A Logical Formula. If we write

P (L) : L satisfies pumping lemma and

R(L) : L is regular,

then the pumping lemma for regular languages is R(L) =⇒ P (L). The state-
ment P (L) can be elaborated by the following logical formula:

(∀L)(∃κ)(∀x)
[
x ∈ L and |x| ≥ κ =⇒

(∃u, v, w)
(
x = uvw, v 6= ε =⇒ (∀i)(uviw ∈ L)

)]
.

A Tool to Ascertain Non-regularity. If a language fails to satisfy the
pumping lemma, then it cannot be regular. That is, ¬P (L) =⇒ ¬R(L) – the
contrapositive form of the pumping lemma. The ¬P (L) can be formulated
as below:

(∃L)(∀κ)(∃x)
[
x ∈ L and |x| ≥ κ and

(∀u, v, w)
(
x = uvw, v 6= ε and (∃i)(uviw /∈ L)

)]
.

This statement can be better explained via the following adversarial game.
Given a language L, if we want to show that L is not regular, then we play
as given in the following steps.

1. An opponent will give us an arbitrary number κ.

2. Given κ, we pickup a string x ∈ L with |x| ≥ κ.

3. Opponent will divide x into u, v and w, arbitrarily, with v 6= ε. (Here
x = uvw.)

4. We pickup an i such that uviw 6∈ L.

Example 5.2.3. We wish to show that L = {anbn | n ≥ 0} is not regular. An
opponent will give us a number κ. Then, we choose a string x = ambm ∈ L
with |x| ≥ κ. The opponent will give us u, v and w, where x = uvw and
v 6= ε. Now, there are three possibilities for v, viz. (1) ap, for p ≥ 1 (2) bq,
for q ≥ 1 (3) apbq, for p, q ≥ 1. In each case, we give an i such that uviw 6∈ L,
as shown below.

Case-1 (v = ap, p ≥ 1). Choose i = 2. Then uviw = am+kbm which is
clearly not in L.

(In fact, except for i = 1, for all i, uviw 6∈ L)

106

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 13 jntuworldupdates.org

Case-2 (v = bq, q ≥ 1). Similar to the Case-1, one may easily observe
that except for i = 1, for all i, uviw 6∈ L. As above, say i = 2, then
uv2w 6∈ L.

Case-3 (v = apbq, p, q ≥ 1). Now, again choose i = 2. Note that

uviw = am−p(apbq)2bm−q = ambqapbm.

Since p, q ≥ 1, we observe that there is an a after a b in the resultant
string. Hence uv2w 6∈ L.

Hence, we conclude that L is not regular.

Example 5.2.4. We prove that L = {ww | w ∈ (0 + 1)∗} is not regular. On
contrary, assume that L is regular. Let κ be the pumping lemma constant
associated to L. Now, choose x = 0n1n0n1n from L with |x| ≥ κ. If x is
written as uvw with v 6= ε, then there are ten possibilities for v. In each
case, we observe that pumping v will result a string that is not in L. This
contradicts the pumping lemma so that L is not regular.

Case-1 (For p ≥ 1, v = 0p with x = 0k1v0k21n0n1n).
Through the following points, in this case, we demonstrate a contra-
diction to pumping lemma.

1. In this case, v is in the first block of 0′s and p < n.

2. Suppose v is pumped for i = 2.

3. If the resultant string uviw is of odd length, then clearly it is not
in L.

4. Otherwise, suppose uviw = yz with |y| = |z|.
5. Then, clearly, |y| = |z| = 4n+p

2
= 2n + p

2
.

6. Since z is the suffix of the resultant string and |z| > 2n, we have
z = 1

p
2 0n1n.

7. Hence, clearly, y = 0n+p1n− p
2 6= z so that yz 6∈ L.

Using a similar argument as given in Case-1 and the arguments shown
in Example 5.2.3, one can demonstrate contradictions to pumping lemma
in each of the following remaining cases.

Case-2 (For q ≥ 1, v = 1q with x = 0n1k1v1k20n1n). That is, v is in the first
block of 1′s.

Case-3 (For p ≥ 1, v = 0p with x = 0n1n0k1v0k21n). That is, v is in the
second block of 0′s.

107

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 14 jntuworldupdates.org

Case-4 (For q ≥ 1, v = 1q with x = 0n1n0n1k1v1k2). That is, v is in the
second block of 1′s.

Case-5 (For p, q ≥ 1, v = 0p1q with x = 0k1v1k20n1n). That is, v is in the
first block of 0n1n.

Case-6 (For p, q ≥ 1, v = 1p0q with x = 0n1k1v0k21n). That is, v is in the
block of 1n0n.

Case-7 (For p, q ≥ 1, v = 0p1q with x = 0n1n0k1v1k2). That is, v is in the
second block of 0n1n.

Case-8 (For p, q ≥ 1, v = 0p1n0q with x = 0k1v0k21n). That is, v is in the
block of 0n1n0n.

Case-9 (For p, q ≥ 1, v = 1p0n1q with x = 0n1k1v1k2). That is, v is in the
block of 1n0n1n.

Case-10 (For p, q ≥ 1, v = 0p1n0n1q with x = 0k1v1k2). That is, v extended
over all the blocks of 0’s and 1′s.

Hence, L is not regular.

Remark 5.2.5. Although it is sufficient to choose a particular string to counter
the pumping lemma, it is often observed that depending on the string chosen
there can be several possibilities of partitions as uvw that are to be considered
as we have to check for all possibilities. For instance, in Example 5.2.3 we
have discussed three cases. On the other hand, in Example 5.2.4 instead of
choosing a typical string we have chosen a string which reduces the number
of possibilities to discuss. Even then, there are ten possibilities to discuss.

In the following, we show how the number of possibilities, to be con-
sidered, can be reduced further. In fact, we observe that it is sufficient to
consider the occurrence of v within the first κ symbols of the string under
consideration. More precisely, we state the assertion through the following
theorem, a restricted version of pumping lemma.

Theorem 5.2.6 (Pumping Lemma – A Restricted Version). If L is an infi-
nite regular language, then there exists a number κ (associated to L) such that
for all x ∈ L with |x| ≥ κ, x can be written as uvw satisfying the following:

1. v 6= ε,

2. |uv| ≤ κ, and

3. uviw ∈ L, for all i ≥ 0.

108

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 15 jntuworldupdates.org

Proof. The proof of the theorem is exactly same as that of Theorem 5.2.1,
except that, when the pigeon-hole principle is applied to find the repetition
of states in the accepting sequence, we find the repetition of states within
the first κ + 1 states of the sequence. As |x| ≥ κ, there will be at least κ + 1
states in the sequence and since |Q| = κ, there will be repetition in the first
κ + 1 states. Hence, we have the desired extra condition |uv| ≤ κ.

Example 5.2.7. Consider that language L = {ww | w ∈ (0 + 1)∗} given
in Example 5.2.4. Using Theorem 5.2.6, we supply an elegant proof for L
is not regular. If L is regular, then let κ be the pumping lemma constant
associated to L. Now choose the string x = 0κ1κ0κ1κ from L. Using the
Theorem 5.2.6, if x is written as uvw with |uv| ≤ κ and v 6= ε then there is
only one possibility for v in x, that is a substring of first block of 0′s. Hence,
clearly, by pumping v we get a string that is not in the language so that we
can conclude L is not regular.

Example 5.2.8. We show that the language L = {x ∈ (a + b)∗ | x = xR} is
not regular. Consider the string x = 0κ1κ1κ0κ from L, where κ is pumping
lemma constant associated to L. If x is written as uvw with |uv| ≤ κ and
v 6= ε then there is only one possibility for v in x, as in the previous example.
Now, pumping v will result a string that is not a palindrome so that L is not
regular.

Example 5.2.9. We show that the language

L = {xcy | x, y ∈ {a, b}∗ and |x| = |y|}

is not regular. On contrary, assume that L is regular. Then, since regular
languages are closed with respect to intersection, L′ = L ∩ a∗cb∗ is regular.
But, note that

L′ = {ancbn | n ≥ 0},
because xcy ∈ a∗cb∗ and |x| = |y| implies xcy = ancbn. Now, using the
homomorphism h that is defined by

h(a) = 0, h(b) = 1, and h(c) = ε

we have
h(L′) = {0n1n | n ≥ 0}.

Since regular languages are closed under homomorphisms, h(L′) is also reg-
ular. But we know that {0n1n | n ≥ 0} is not regular. Thus, we arrived at a
contradiction. Hence, L is not regular.

109

smartworlD.asia

Smartworld.asia Specworld.in

Smartzworld.com 16 jntuworldupdates.org

