Smartzworld.com Smartworld.asia

Doctor HTML - Web Page Analyzer:

- Did not find the required open and close HEAD tag. You should open and close the HEAD tag in order to get consistent performance on all browsers.
- Found extra close STRONG tags in the document. Please remove them.

UNIT -5:

Keyboard Layouts

QWERTY layout

- 1870 Christopher Latham Sholes
- good mechanical design and a clever placement of the letters that slowed down the users enough that key jamming was infrequent
- put frequently used letter pairs far apart, thereby increasing finger travel distances

Dvorak layout

- **—** 1920
- reduces finger travel distances by at least one order of magnitude
- Acceptance has been slow despite the dedicated efforts of some devotees
- it takes about 1 week of regular typing to make the switch, but most users have been unwilling to invest the effort

ABCDE style

 26 letters of the alphabet laid out in alphabetical order nontypists will find it easier to locate the keys

Additional keyboard issues

- IBM PC keyboard was widely criticized because of the placement of a few keys
 - backslash key where most typists expect SHIFT key
 - placement of several special characters near the ENTER key
- Number pad layout
- wrist and hand placement

Keys

- 1/2 inch square keys
- 1/4 inch spacing between keys
- slight concave surface
- matte finish to reduce glare finger slippage
- 40- to 125-gram force to activate
- 3 to 5 millimeters displacement
- tactile and audible feedback important
- certain keys should be larger (e.g. ENTER, SHIFT, CTRL)
- some keys require state indicator, such as lowered position or light indicator (e.g. CAPS LOCK)
- key labels should be large, meaningful, permanent
- some "home" keys may have additional features, such as deeper cavity or small raised dot, to help user locate their fingers properly (caution - no standard for this)

Function keys

- users must either remember each key's function, identify them from the screen's display, or use a template over the keys in order to identify them properly
- can reduce number of keystrokes and errors
- meaning of each key can change with each application placement on keyboard can affect efficient use
- special-purpose displays often embed function keys in monitor bezel
- lights next to keys used to indicate availability of the function, or on/off status
- typically simply labeled F1, F2, etc, though some may also have meaningful labels, such as CUT, COPY, etc.
- frequent movement between keyboard home position and mouse or function keys can be disruptive to use
- alternative is to use closer keys (e.g. ALT or CTRL) and one letter to indicate special function

Cursor movement keys

- up, down, left, right
- some keyboards also provide diagonals

- best layout is natural positions
- inverted-T positioning allows users to place their middle three fingers in a way that reduces hand and finger movement
- cross arrangement better for novices than linear or box
- typically include typamatic (auto-repeat) feature
- important for form-fillin and direct manipulation
- other movements may be performed with other keys, such as TAB, ENTER, HOME, etc.

Keyboard and keypads for small devices

- Wireless or foldable keyboards
- Virtual keyboards
- Cloth keyboards
- Soft keys
- Pens and touchscreens

Pointing Devices

Pointing devices are applicable in six types of interaction tasks:

1. Select:

- user chooses from a set of items.
- used for traditional menu selection, identification of a file in a directory, or marking of a part in an automobile design.

2. Position:

- user chooses a point in a one-, two-, three-, or higher-dimensional space
- used to create a drawing, to place a new window, or to drag a block of text in a figure.

3. Orient:

- user chooses a direction in a two-, three-, or higher-dimensional space.
- direction may simply rotate a symbol on the screen, indicate a direction of motion for a space ship, or control the operation of a robot arm.

4. Path:

- user rapidly performs a series of position and orient operations.
- may be realized as a curving line in a drawing program, the instructions for a cloth cutting machine, or the route on a map.

5. Quantify:

- user specifies a numeric value.
- usually a one-dimensional selection of integer or real values to set parameters,
 such as the page number in a document, the velocity of a ship, or the amplitude

of a sound.

6. Text:

- user enters, moves, and edits text in a two-dimensional space. The
- pointing device indicates the location of an insertion, deletion, or change.
- more elaborate tasks, such as centering; margin setting; font sizes; highlighting, such as boldface or underscore; and page layout.

Direct-control pointing devices

lightpen

- enabled users to point to a spot on a screen and to perform a select, position, or other task
- it allows direct control by pointing to a spot on the display
- incorporates a button for the user to press when the cursor is resting on the desired spot on the screen
- lightpen has three disadvantages: users' hands obscured part of the screen, users had to remove their hands from the keyboard, and users had to pick up the lightpen

Touchscreen

- allows direct control touches on the screen using a finger
- early designs were rightly criticized for causing fatigue, hand-obscuring-thescreen, hand-off-keyboard, imprecise pointing, and the eventual smudging of the display
- lift-off strategy enables users to point at a single pixel
- the users touch the surface
- then see a cursor that they can drag around on the display
- when the users are satisfied with the position, they lift their fingers off the display to activate
- can produce varied displays to suit the task
- are fabricated integrally with display surfaces

Tablet PCs and Mobile Devices:

- Natural to point on the LCD surface
- Stylus
- Keep context in view
- Pick up & put down stylus
- Gestures and handwriting recognition

<u>Indirect pointing devices</u>

- mouse
- the hand rests in a comfortable position, buttons on the mouse are easily pressed, even long motions can be rapid, and positioning can be precise
- trackball
- usually implemented as a rotating ball 1 to 6 inches in diameter that moves a cursor
- joystick
- are appealing for tracking purposes
- graphics tablet
- a touch-sensitive surface separate from the screen
- touchpad
 - built-in near the keyboard offers the convenience and precision of a touchscreen while keeping the user's hand off the display surface
 - Human-factors variables
 - speed of motion for short and long distances
 - accuracy of positioning
 - error rates
 - learning time
 - user satisfaction
 - Other variables
 - cost
 - durability
 - space requirements
 - weight
 - left- versus right-hand use
 - likelihood to cause repetitive-strain injury
 - compatibility with other systems

Comparison of pointing devices

- Some results
- direct pointing devices faster, but less accurate

- graphics tablets are appealing when user can remain with device for long periods without switching to keyboard
- mouse is faster than isometric joystick
- for tasks that mix typing and pointing, cursor keys a faster and are preferred by users to a mouse
- muscular strain is low for cursor keys
- Fitts' Law
- Index of difficulty = log 2 (2D / W)
- Time to point = C1 + C2 (index of difficulty)
- C1 and C2 and constants that depend on the device
- Index of difficulty is $\log 2 (2*8/1) = \log 2(16) = 4$ bits
- A three-component equation was thus more suited for the high-precision pointing task:
- Time for precision pointing = C1 + C2 (index of difficulty) + $C3 \log 2$ (C4 / W)

Novel devices

- Foot controls
- Eye-tracking
- Multiple-degrees-of-freedom devices
- DataGlove
- Haptic feedback
- Bimanual input
- Ubiquitous computing and tangible user interfaces
- Handheld devices

Speech and auditory interfaces

- Speech recognition still does not match the fantasy of science fiction:
 - demands of user's working memory
 - background noise problematic
 - variations in user speech performance impacts effectiveness
 - most useful in specific applications, such as to benefit handicapped users
- Discrete word recognition
- recognize individual words spoken by a specific person; can work with 90- to 98percent reliability for 20 to 200 word vocabularies

- Speaker-dependent training, in which the user repeats the full vocabulary once or twice
- Speaker-independent systems are beginning to be reliable enough for certain commercial applications
- been successful in enabling bedridden, paralyzed, or otherwise disabled people
- also useful in applications with at least one of the following conditions:
 - speaker's hands are occupied
 - mobility is required
 - speaker's eyes are occupied
 - harsh or cramped conditions preclude use of keyboard
- voice-controlled editor versus keyboard editor
 - lower task-completion rate
 - lower error rate
- use can disrupt problem solving
- Continuous-speech recognition
 - Not generally available:
 - difficulty in recognizing boundaries between spoken words
 - normal speech patterns blur boundaries
 - many potentially useful applications if perfected
- Speech store and forward
 - Voice mail users can
 - receive messages
 - replay messages
 - reply to caller
 - forward messages to other users, delete messages
 - archive messages
- Systems are low cost and reliable.
- Voice information systems
 - Stored speech commonly used to provide information about tourist sites, government services, after-hours messages for organizations
 - Low cost
 - Voice prompts
 - Deep and complex menus frustrating

- Slow pace of voice output, ephemeral nature of speech, scanning and searching problems
- Voice mail
- Handheld voice recorders
- Audio books
- Instructional systems

Speech generation

- Michaelis and Wiggins (1982) suggest that speech generation is
 "frequently preferable" under these circumstances:
 - The message is simple.
 - The message is short.
 - The message will not be referred to later.
 - The message deals with events in time.
 - The message requires an immediate response.
 - The visual channels of communication are overloaded.
 - The environment is too brightly lit, too poorly lit, subject to severe vibration, or otherwise unsuitable for transmission of visual information.
 - The user must be free to move around.
 - The user is subjected to high G forces or anoxia

Audio tones, audiolization, and music

- Sound feedback can be important:
 - to confirm actions
 - offer warning
 - for visually-impaired users

- music used to provide mood context, e.g. in games
- can provide unique opportunities for user, e.g. with simulating various musical instruments

Displays – Small and Large

- The display has become the primary source of feedback to the user from the computer
- The display has many important features, including:
- Physical dimensions (usually the diagonal dimension and depth)
- Resolution (the number of pixels available)
- Number of available colors, color correctness
- Luminance, contrast, and glare
 - Power consumption
 - Refresh rates (sufficient to allow animation and video)
 - Cost
 - Reliability

Usage characteristics distinguish displays:

- Portability
- Privacy
- Saliency
- Ubiquity
- Simultaneity

Display technology

- Monochrome displays
- are adequate, and are attractive because of their lower cost
- RGB shadow-mask displays
- small dots of red, green, and blue phosphors packed closely
- Raster-scan cathode-ray tube (CRT)
- electron beam sweeping out lines of dots to form letters
- refresh rates 30 to 70 per second
- Liquid-crystal displays (LCDs)

- voltage changes influence the polarization of tiny capsules of liquid crystals
- flicker-free
- size of the capsules limits the resolution
- Plasma panel
- rows of horizontal wires are slightly separated from vertical wires by small glassenclosed capsules of neon-based gases
- Light-emitting diodes (LEDs)
- certain diodes emit light when a voltage is applied
- arrays of these small diodes can be assembled to display characters
- Electronic ink
- Paper like resolution
- Tiny capsules with negatively and positively charged particles
- Braille displays
- Pins provide output for the blind
- Large displays
- Informational wall displays
- Interactive wall displays
- Multiple desktop displays
- Heads-up and helmet mounted displays
- A heads-up display can, for instance, project information on a partially silvered widescreen of an airplane or car
- A helmet/head mounted display (HMD) moves the image with the user
- 3D images

Mobile device displays

- Currently mobile devices used for brief tasks, except for game playing
- Optimize for repetitive tasks
- Custom designs to take advantage of every pixel
- DataLens allows compact overviews
- Web browsing difficult
- Okay for linear reading, but making comparisons can be difficult

Animation, image, and video

- Accelerated graphics hardware
- More information shared and downloaded on the web
- Scanning of images and OCR
- Digital video
- CDROMS and DVDs
- Compression and decompression through MPEG
- Computer-based video conferencing

Printers

- Important criteria for printers:
- Speed
- Print quality
- Cost
- Compactness
- Quiet operation
- Use of ordinary paper (fanfolded or single sheet)
- Character set
- Variety of typefaces, fonts, and sizes
- Highlighting techniques (boldface, underscore, and so on)
- Support for special forms (printed forms, different lengths, and so on)
- Reliability
- dot-matrix printers
- print more than 200 characters per second, have multiple fonts, can print boldface, use variable width and size, and have graphics capabilities
- inkjet printers
- offer quiet operation and high-quality output
- thermal printers or fax machines
- offer quiet, compact, and inexpensive output on specially coated papers
- laser printers

Smartzworld.com Smartworld.asia

135

- operate at 30,000 lines per minute
- color printers
- allow users to produce hardcopy output of color graphics, usually by an inkjet approach with three colored and black inks
- photographic printers
- allow the creation of 35-millimeter or larger slides (transparencies) and photographic prints

Smartzworld.com Smartworld.asia

136