
UNIT-II Retrieval Utilities 

Utilities improve the results of a retrieval strategy. Most utilities add or remove terms from the 

initial query in an attempt to refine the query. Others simply refine the focus of the query by 

using  subdocuments or passages instead of whole documents. The key is that each of these 

utilities (although rarely presented as such) are plug-and-play utilities that operate with any 

arbitrary retrieval strategy. 

The utilities identified are: 

Relevance Feedback-The top documents found by an initial query are identified as relevant. 

These documents are then examined. They may be deemed relevant either by manual 

intervention or by an assumption that the top n documents are relevant. Various techniques are 

used to rank the terms. The top t terms from these documents are then added back to the original 

query. 

 Clustering-Documents or terms are clustered into groups either automatically or manually. The 

query is only matched against clusters that are deemed to contain relevant information. This 

limits the search space. The goal is to avoid non-relevant documents before the search even 

begins 

N-grams-The query is partitioned into n-grams (overlapping or non-overlapping sequences of n  

characters). These are used to match queries with the document. The goal is to obtain a "fuzzier" 

match that would be resilient to misspellings or optical character recognition (OCR) errors. Also, 

n-grams are language independent. 

Thesauri-Thesauri are automatically generated from text or by manual methods. The key is not 

only to generate the thesaurus, but to use it to expand either queries or documents to improve 

retrieval. 

Regression Analysis- Statistical techniques are used to identify parameters that describe 

characteristics of a match to a relevant document. These can then be used with a regression 

analysis to identify the exact parameters that refine the similarity measure.  

2.1 Relevance Feedback 

A popular information retrieval utility is relevance feedback. The basic  premise is to implement 

retrieval in multiple passes. The user refines the query in each pass based on results of previous 

queries. Typically, the user indicates which of the documents presented in response to an initial 

query are relevant, and new terms are added to the query based on this selection. Additionally, 

existing terms in the query can be re-weighted based on user feedback. This process is illustrated 

in Figure.  
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An alternative is to avoid asking the user anything at all and to simply assume the top ranked 

documents are relevant. Using either manual (where the user is asked) or automatic (where it is 

assumed the top documents are relevant) feedback, the initial query is modified, and the new 

query is re-executed. 

 

Fig:  Relevance feedback process 

 

2.1.1 Relevance Feedback in the Vector Space Model 

Rocchio, in his initial paper, started the discussion of relevance feedback . Interestingly, his basic 

approach has remained fundamentally unchanged. Rocchio's approach used the vector space 

model to rank documents. The query is represented by a vector Q, each document is represented 

by a vector Di, and a measure of relevance between the query and the document vector is 

computed as SC(Q, Di), where SC is the similarity coefficient. As discussed the SC is computed 

as an inner product of the document and query vector or the cosine of the angle between the two 

vectors. The basic assumption is that the user has issued a query Q and retrieved a set of 

documents. The user is then asked whether or not the documents are relevant. After the user 

responds, the set R contains the nl relevant document vectors, and the set S contains the n2 non-
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relevant document vectors. Rocchio builds the new query Q' from the old query Q using the 

equation given below: 

 

                    Ri and Si are individual components of R and S, respectively. 

The document vectors from the relevant documents are added to the initial query vector, and the 

vectors from the non-relevant documents are subtracted. If all documents are relevant, the third 

term does not appear. To ensure that the new information does not completely override the 

original query, all vector modifications are normalized by the number of relevant and non-

relevant documents. The process can be repeated such that Qi+1 is derived from Qi for as many 

iterations as desired. The idea is that the relevant documents have terms matching those in the 

original query. The weights  corresponding to these terms are increased by adding the relevant 

document vector. Terms in the query that are in the nonrelevant documents have their weights 

decreased. Also, terms that are not in the original query (had an initial component value of zero) 

are now added to the original query. In addition to using values n1 and n2, it is possible to use 

arbitrary weights. 

The equation now becomes: 

 

Not all of the relevant or non-relevant documents must be used. Adding thresholds na and nb to 

indicate the thresholds for relevant and non-relevant vectors results in: 

 

The weights a, ,8, and, are referred to as Rocchio weights and are frequently mentioned in the 

annual proceedings of TREe. The optimal values were experimentally obtained, but it is 

considered common today to drop the use of nonrelevant documents (assign zero to ,) and only 

use the relevant documents. This basic theme was used by Ide in follow-up research to Rocchio 

where the following equation was defined: 
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Another intresting case  when q retrieves only non-relevant documents then an arbitrary weight 

should be added to most frequently occurring term.This increases weight of term .By increasing 

weight of term it yields some relevant documents.This approach is applied only in manual 

relevance feedback and not in automatic relevance feedback. 

2.1.2  Relevance Feedback in the Probabilistic Model 

In probabilistic model the terms in the document are treated as evidence that a document is 

relevant to a query. Given the assumption of term independence, the probability that a document 

is relevant is computed as a product of the probabilities of each term in the document matching a 

term in the query. The probabilistic model is well suited for relevance feedback because it is 

necessary to know how many relevant documents exist for a query to compute the term weights. 

Typically, the native probabilistic model requires some training data for which relevance 

information is known. Once the term weights are computed, they are applied to another 

collection. Relevance feedback does not require training data. Viewed as simply a utility instead 

of a retrieval strategy, probabilistic relevance feedback "plugs in" to any existing retrieval 

strategy. The initial query is executed using an arbitrary retrieval strategy and then the relevance 

information obtained during the feedback stage is incorporated. 

For example, the basic weight used in the probabilistic retrieval strategy is: 

                                             

where: 

Wi -weight of term i in a particular query 

R -number of documents that are relevant to the query 

N -number of documents in the collection 

r I - number of relevant documents that contain term i 

ni -number of documents that contain term i 

R and r cannot be known at the time of the initial query unless training data with relevance 

information is available 

2.1.2.1 Initial Estimates 

The initial estimates for the use of relevance feedback using the probabilistic model have varied 

widely. Some approaches simply sum the idf as an initial first estimate. Wu and Salton proposed 

an interesting extension which requires the use of training data. For a given term t, it is necessary 
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to know how many documents are relevant to term t for other queries. The following equation 

estimates the value of r i prior to doing a retrieval: 

                                                                           ri = a + blog f 

where f is the frequency of the term across the entire document collection. 

After obtaining a few sample points, values for a and b can be obtained by a least squares curve 

fitting process. Once this is done, the value for ri can be estimated given a value of f, and using 

the value of ri, an estimate for an initial weight (IW) is obtained. The initial weights are then 

combined to compute a similarity coefficient. In the paper [Wu and Salton, 1981] it was 

concluded (using very small collections) that idf was far less computationally expensive, and that 

the IW resulted in slightly worse precision and recall. 

2.1.2.2 Computing New Query Weights 

For,query Q,Document D and t terms in D,Di is binary.If the term is present then place 1 

otherwise place 0. 

                                      

Where k is constant. 

                                           

After substituting  we get  

                                              

Using relevance feedback, a query is initially submitted and some relevant documents might be 

found in the initial answer set. The top documents are now examined by the user and values for r 

i and R can be more accurately estimated (the values for ni and N are known prior to any 

retrieval). Once this is done, new weights are computed and the query is executed again. Wu and 

Salton tested four variations of composing the new query: 

1. Generate the new query using weights computed after the first retrieval. 

2. Generate the new query, but combine the old weights with the new. Wu suggested that the 

weights could be combined as: 
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Where  

Q-old weights 

T-weights computed during first pass 

β-scaling factor that inducates importance of initial weights 

The ratio of relevant documents retrieved to relevant documents available collection-wide is used 

for this value  

A query that retrieves many relevant documents should use the new weights more heavily than a 

query that retrieves only a few relevant documents. 

3. Expand the query by combining all the terms in the original query with all the terms found in 

the relevant documents. The weights for the new query are used as in step one for all of the old 

terms (those that existed in the original query and in the relevant documents). For terms that 

occurred in the original query, but not in any documents retrieved in the initial phase, their 

weights are not changed. This is a fundamental difference from the work done by 

4. Expand the query using a combination of the initial weight and the new weight. This is similar 

to variation number two above. Assuming ql to qm are the weights found in the m components of 

the original query, and m - n new 

terms are found after the initial pass, we have the following: 

 

                                                        

Here the key element of the idf is used as the adjustment factor instead of the crude 0.5 

assumption. 
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2.1.2.3 Partial Query Expansion 

The initial work done by Wu and Salton in 1981 either used the original query and reweighted it 

or added all of the terms in the initial result set to the query and computed the weights for them. 

The idea of using only a selection of the terms found in the top documents was presented. Here 

the top ten documents were retrieved. Some of these documents were manually identified as 

relevant. The question then arises as to which terms from these documents should be used to 

expand the initial query. Harman sorted the terms based on six different sort orders and, once the 

terms were sorted, chose the top twenty terms. The sort order had a large impact on 

effectiveness. Six different sort orders were tested on the small Cranfield collection. 

In many of the sort orders a noise measure, n, is used. This measure, for the kth term is computed 

as: 

 

t fik -number of occurrences of term i in document k 

fk  -number of occurrences of term k in the collection 

N -number of terms in the collection 

This noise value increases for terms that occur infrequently in many documents, but frequently 

across the collection. A small value for noise occurs if a term occurs frequently in the collection. 

It is similar to the idf, but the frequency within individual documents is incorporated. 

Additional variables used for sort orders are: 

Pk number of documents in the relevant set that contain term k 

rt fk number of occurrences of term k in the relevant set 

A modified noise measure, rnk. is defined as the noise within the relevant set. 

This is computed as: 

 

Various combinations of rnk, nk. and Pk were used to sort the top terms. The six sort orders 

tested were: 
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• nk 

• Pk 

• rnk 

• nk x rtfk 

• nk x fk x Pk 

• nk x fk 

Six additional sort orders were tested. 

The sorts tested were: 

•  

where RTj - total number of documents retrieved for query j,   

dfi - document frequency or number of documents in the collection that contain term i,  

N - number of documents in the collection. 

This gives additional weight to terms that appear in multiple documents of the initial answer set. 

 

•  

rij - number of retrieved relevant documents for query j that have term i.  

Rj-number of retrieved relevant documents for query j. 

 This gives additional weight to terms that occur in many relevant documents and which occur 

infrequently across the entire document collection. 

•  

Wij - term weight for term i in query j. 

Pij-The probability that term i is assigned within the set of relevant documents to query j  

qij -The probability that term i is assigned within the set of non-relevant documents for query j is.  

These are computed as: 
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•  

where the theoretical foundation is based on the presumption that the term i's importance is 

computed as the amount that it will increase the difference between the average score of a 

relevant document and the average score of a nonrelevant document. The means of identifying a 

term weight are not specified in this work, so for this sort order, idfj is used. 

•  

where the term weight is computed as given above. 

•  

where RT Fi is the number of occurrences of term i in the retrieved relevant documents. 

Essentially, sort three was found to be superior to sorts four, five, and six, but there was little 

difference in the use of the various sort techniques. Sorts one and two were not as effective. 

2.1.2.4 Number of Feedback Iterations 

The number of iterations needed for successful relevance feedback was initially tested in 1971 by 

Salton. His 1990 work with 72 variations on relevance feedback assumed that only one iteration 

of relevance feedback was used. Harman investigated the effect of using multiple iterations of 

relevance feedback . The top ten documents were initially retrieved. A count of the number of 

relevant documents was obtained, and a new set of ten documents was then retrieved. The 

process continued for six iterations. Searching terminates if no relevant documents are found in a 

given iteration. Three variations of updating term weights across iterations were used based on 

whether or not the counting of relevant documents found was static or cumulative. Each iteration 

used the basic strategy of retrieving the top ten documents, identifying the top 20 terms, and 

reweighting the terms. 

The three variations tested were: 

• Cumulative count-counts relevant documents and term frequencies within relevant documents. 

It accumulates across iterations 

• Reset count-resets the number of relevant documents and term frequencies within relevant 

documents are reset after each iteration 
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• Reset count, single iteration term---counts are reset and the query is reset such that it only 

contains terms from the current iteration 

In each case, the number of new relevant documents found increased with each iteration. 

However, most relevant documents were found in the first two iterations.On average, iterations 

3, 4, 5, and 6 routinely found less than one new relevant document per query. 

2.1.2.5 User Interaction 

The initial work in relevance feedback assumed the user would be asked to determine which 

documents were relevant to the query. Subsequent work assumes the top n documents are 

relevant and simply uses these documents. An interesting user study, done by Spink, looked at 

the question of using the top documents to suggest terms for query expansion, but giving the user 

the ability to pick and choose which terms to add  . Users were also studied to determine how 

much relevance feedback is used to add terms as compared to other sources. The alternative 

sources for  query terms were: 

• Original written query 

• User interaction-discussions with an expert research user or "intermediary" prior to the search 

to identify good terms for the query 

• Intermediary-suggestion by expert users during the search 

• Thesaurus 

• Relevance feedback-selection of terms could be selected by either the user or the expert 

intermediary 

Users chose forty-eight terms (eleven percent) of their search terms (over forty queries) from 

relevance feedback. Of these, the end-user chose fifteen and the expert chose thirty-three. This 

indicates a more advanced user is more likely to take advantage of the opportunity to use 

relevance feedback. 

Additionally, the study identified which section of documents users found terms for relevance 

feedback. Some eighty-five percent of the relevance feedback terms came from the title or the 

descriptor fields in the documents, and only two terms came from the abstract of the document. 

This study concluded that new systems should focus on using only the title and descriptor 

elements of documents for sources of terms during the relevance feedback stages. 

2. 2 Clustering 

Document clustering attempts to group documents by content to reduce the search space required 

to respond to a query. For example, a document collection that contains both medical and legal 

documents might be clustered such that all medical documents are placed into one cluster, and all 
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legal documents are assigned to a legal cluster. A query over legal material might then be 

directed (either automatically or manually) to the legal document cluster. 

 

 

                                                       Document clustering 

 

Several clustering algorithms have been proposed. In many cases, the evaluation of clustering 

algorithms has been challenging because it is difficult to automatically point a query at a 

document cluster. Viewing document clustering as a utility to assist in ad hoc document retrieval, 

we now focus on clustering algorithms and examine the potential uses of these algorithms in 

improving precision and recall of ad hoc and manual query processing. Another factor that limits 

the widespread use of clustering algorithms is their computational complexity. Many algorithms 

begin with a matrix that contains the similarity of each document with every other document. For 

a 1,000,000 document collection, this matrix has different elements. Each of these pair-

wise similarity calculations is computationally expensive due to the same factors found in the 

traditional retrieval problem. Initial work on a Digital Array Processor (DAP) was done to 

improve run-time performance of clustering algorithms by using parallel processing 

Subsequently, these algorithms were implemented on a parallel machine with a torus 

interconnection network. Clusters are formed with either a top-down or bottom-up process. In a 

top-down approach, the entire collection is viewed as a single cluster and is partitioned into 

smaller and smaller clusters. The bottom-up approach starts with each document being placed 

into a separate cluster of size one and these clusters are then glued to one another to form larger 

and larger clusters. The bottom up approach is referred to as hierarchical agglomerative because 

the result of the clustering is a hierarchy (as clusters are pieced together, a hierarchy emerges). 

Other clustering algorithms, such as the popular K-Means algorithm, use an iterative process that 

begins with random cluster centroids and iteratively adjusts them until some termination 

condition is met. Some studies have found that hierarchical algorithms, particularly those that 

use group-average cluster merging schemes, produce better clusters because of their complete 
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document-to-document comparisons . More recent work has indicated that this may not be true 

across all metrics and that some combination of hierarchical and iterative algorithms yields 

improved effectiveness .As these studies use a variety of different experiments, employ different 

metrics and (often very small) document collections, it is difficult to conclude which clustering 

method is definitively superior. 

2.2.1 Result Set Clustering 

Clustering was used as a utility to assist relevance feedback.In those cases only the results of a 

query were clustered (a much smaller document set), and in the relevance feedback process, by 

only new terms from large clusters were selected.Recently, Web search results were clustered 

based on significant phrases in the result set . First, documents in a result set are parsed, and two 

term phrases are identified. Characteristics about these phrases are then used as input to a model 

built by various learning algorithms (e.g.; linear regression, logistic regression, and support 

vector regression are used in this work). Once the most significant phrases are identified they are 

used to build clusters. A cluster is initially identified as the set of documents that contains one of 

the most significant phrases. For example, if a significant phrase contained the phrase "New 

York", all documents that contain this phrase would be initially placed into a cluster. Finally, 

these initial clusters are merged based on document-document similarity. 

2.2.2 Hierarchical Agglomerative Clustering 

First the N x N document similarity matrix is formed. Each document is placed into its own 

cluster. The following two steps are repeated until only one cluster exists. 

• The two clusters that have the highest similarity are found. 

• These two clusters are combined, and the similarity between the newly formed cluster and the 

remaining clusters recomputed. 

As the larger cluster is formed, the clusters that merged together are tracked and form a 

hierarchy. 

Assume documents A, B, C, D, and E exist and a document-document similarity matrix exists. 

At this point, each document is in a cluster by itself: 

{{A} {B} {C} {D} {E}} 

We now assume the highest similarity is between document A and document B. So the contents 

of the clusters become: 

{{A,B} {C} {D} {E}} 

After repeated iterations of this algorithm, eventually there will only be a single cluster that 

consists of {A,B,C,D,E}. However, the history of the formation of this cluster will be known. 
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The node {AB} will be a parent of nodes {A} and {B} in the hierarchy that is formed by 

clustering since both A and B were merged to form the cluster {AB}.  

Hierarchical agglomerative algorithms differ based on how {A} is combined with {B} in the first 

step. Once it is combined, a new similarity measure is computed that indicates the similarity of a 

document to the newly formed cluster {AB} 

2.2.2.1 Single Link Clustering 

The similarity between two clusters is computed as the maximum similarity between any two 

documents in the two clusters, each initially from a separate cluster. Hence, if eight documents 

are in cluster A and ten are in cluster B, we compute the similarity of A to B as the maximum 

similarity between any of the eight documents in A and the ten documents in B. 

2.2.2.2 Complete Linkage 

Inter-cluster similarity is computed as the minimum of the similarity between any documents in 

the two clusters such that one document is from each cluster. 

2.2.2.3 Group Average 

Each cluster member has a greater average similarity to the remaining members of that cluster 

than to any other cluster. As a node is considered for a cluster its average similarity to all nodes 

in that cluster is computed. It is placed in the cluster as long as its average similarity is higher 

than its average similarity for any other cluster. 

2.2.2.4 Ward's Method 

Clusters are joined so that their merger minimizes the increase in the sum of the distances from 

each individual document to the centroid of the cluster containing it. The centroid is defined as 

the average vector in the vector space. If a vector represents the i
th

 document,Di =< tl, t2, ... , tn 

>, the centroid C is written as C =< CI, C2, ... , Cn >.The j
th 

element of the centroid vector is 

computed as the average of all of the j
th 

 elements of the document vectors: 

                                                            

Hence, if cluster A merged with either cluster B or cluster C, the centroids for the potential 

cluster AB and AC are computed as well as the maximum distance of any document to the 

centroid. The cluster with the lowest maximum is used. 

2.2.2.5 Analysis of Hierarchical Clustering Algorithms 

Ward's method typically took the longest to implement  these algorithms, with single link and 

complete linkage being somewhat similar in run-time .A summary of several different studies on 
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clustering is given in . Clusters in single link clustering tend to be fairly broad in nature and 

provide lower effectiveness. Choosing the best cluster as the source of relevant documents 

resulted in very close effectiveness results for complete link, Ward's, and group average 

clustering. A consistent drop in effectiveness for single link clustering was noted. 

2.2.3 Clustering Without a Precomputed Matrix 

Other approaches exist in which the N x N similarity matrix indicates that the similarity between 

each document and every other document is not required.These approaches are dependent upon 

the order in which the input text is received, and do not produce the same result for the same set 

of input files. 

2.2.3.1 One-Pass Clustering 

One approach uses a single pass through the document collection. The first document is assumed 

to be in a cluster of size one. A new document is read as input, and the similarity between the 

new document and all existing clusters is computed. The similarity is computed as the distance 

between the new doc ument and the centroid of the existing clusters. The document is then 

placed into the closest cluster, as long as it exceeds some threshold of closeness. This approach is 

very dependent on the order of the input. An input sequence of documents 1,2, ... ,10 can result 

in very different clusters than any other of the (10! - 1) possible orderings. 

        Since resulting clusters can be too large, it may be necessary to split them into smaller 

clusters. Also, clusters that are too small may be merged into larger clusters. 

 

2.2.3.2 Rocchio Clustering 

 

Rocchio developed a clustering algorithm, in which all documents are scanned and defined as 

either clustered or loose. An unclustered document is tested as a potential center of a cluster by 

examining the density of the document and thereby requiring that nl documents have a similarity 

coefficient of at least Pl and at least n2 documents have a correlation of P2. The similarity 

coefficient Rocchio most typically used was the cosine coefficient. If this is the case, the new 

document is viewed as the center of the cluster and the old documents in the cluster are checked 

to ensure they are close  enough to this new center to stay in the cluster. The new document is 

then marked as clustered  If a document is outside of the threshold, its status may change from 

clustered to loose. After processing all documents, some remain loose. These are added to the 

cluster whose centroid the document is closest to (revert to the single pass approach). 

  Several parameters for this algorithm were described . These included: 

• Minimum and maximum documents per cluster 

• Lower bound on the correlation between an item and a cluster below which an item will not be 

placed in the cluster. This is a threshold that would be used in the final cleanup phase of 

unclustered items. 

●Density test parameters(nl, n2, Pl, P2) 
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• Similarity coefficient 

 

2.2.3.3 K-Means 

 

The popular K-means algorithm is a partitioning algorithm that iteratively moves k centroids 

until a termination condition is met. Typically, these centroids are initially chosen at random. 

Documents are assigned to the cluster corresponding to the nearest centroid. Each centroid is 

then recomputed. The 

algorithm stops when the centroids move so slightly that they fall below a user-defined threshold 

or a required information gain is achieved for a given iteration. 

 

2.2.3.4 Buckshot Clustering 

 

Buckshot clustering is a clustering algorithm which runs in O(kn) time where k is the number of 

clusters that are generated and n is the number of documents. For applications where the number 

of desired clusters is small, the clustering time is close to 0 ( n) which is a clear improvement 

over the  0 ( n 
2
 ) alternatives that require a document -document similarity matrix.  

                  Buckshot clustering works by choosing a random sample of  √kn documents.These 

√kn documents are then clustered by a hierarchical clustering algorithm (anyone will do). Using 

this approach, k clusters can be identified from the cluster hierarchy. The hierarchical clustering 

algorithms all require a DOC-DOC similarity matrix, so this step will require O(√kn
2
) = O(kn) 

time. Once the k centers are found, the remaining documents are then scanned and assigned to 

one of the k centers based on the similarity coefficient between the incoming document and each 

of the k centers. The entire algorithm requires on the order of 0 (kn) time, as 0 (kn) is required to 

obtain the centers and O(kn) is required to scan the document collection and assign each 

document  to one of the centers. Note that buckshot clustering can result in different clusters with 

each running because a different random set of documents can be chosen to find the initial k 

centers.  

 

2.2.3.5 Non-negative Matrix Factorization 

 

A more recent clustering algorithm uses non-negative matrix factorization (NMF). This provides 

a latent semantic space where each axis represents the topic of each cluster. Documents are 

represented as a summation of each axis and are assigned to the cluster associated with the axis 

for which they have the greatest projection value . 

 

2.2.4 Querying Hierarchically Clustered Collections 

 

          Once the hierarchy is generated, it is necessary to determine which portion of the hierarchy 

should be searched. A top-down search starts at the root of the tree and compares the query 
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vector to the centroid for each subtree. The subtree with the greatest similarity is then searched. 

The process continues until a leaf is found or the cluster size is smaller than a predetermined 

threshold. A bottom-up search starts with the leaves and moves upwards. Early work showed that 

starting with leaves, which contained small clusters, was better than starting with large clusters. 

Subsequently three different bottom-up procedures were studied : 

• Assume a relevant document is available, and start with the cluster that contains that document. 

• Assume no relevant document is available. Implement a standard vector space query, and 

assume the top-ranked document is relevant. Start with the cluster that contains the top-ranked 

document. 

• Start with the bottom level cluster whose centroid is closest to the query. 

 

         Once the leaf or bottom-level cluster is identified, all of its parent clusters are added to the 

answer set until some threshold for the size of the answer set is obtained. 

 

         These three bottom-up procedures were compared to a simpler approach in which only the 

bottom is used. The bottom-level cluster centroids are compared to the query and the answer set 

is obtained by expanding the top n clusters. 

 

2.2.5 Efficiency Issues 

 

Although the focus of this chapter is on effectiveness, the limited use of clustering algorithms 

compels us to briefly mention efficiency concerns. Many algorithms begin with a matrix that 

contains the similarity of each document with every other document. For a 1,000,000 document 

collection, this matrix has elements. Algorithms designed to improve the efficiency of 

clustering are given in , but at present, no TREC participant has clustered the entire document 

collection. 

 

2.2.5.1 Parallel Document Clustering 

 

Another means of improving run-time performance of clustering algorithms is to implement 

them on a parallel processor. Initial work on a Digital Array Processor (DAP) was done to 

improve the run-time of clustering algorithms by using parallel processing. These algorithms 

were implemented on a parallel machine with a torus interconnection network . A parallel 

version of the Buckshot clustering algorithm was developed that showed near-linear speedup on 

a network of sixteen workstations. This enables Buckshot to scale to significantly larger 

collections and provides a parallel hierarchical agglomerative algorithm There exists some other 

work specifically focused on parallel hierarchical clustering , but these algorithms often have 

large computational overhead or have not been evaluated for document clustering. Some work 

was done in developing parallel algorithms for hierarchical document clustering, however these 

algorithms were developed for several types of specialized interconnection networks, and it is 
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unclear whether they are applicable to the simple bus connection that is common for many 

current parallel architectures. 

            Additional proposals use clustering as a utility to assist relevance feedback . Only the 

results of a query are clustered (a much smaller document set), and relevance feedback proceeds 

by only obtaining new terms from large clusters. 

 

2.2.5.2 Clustering with Truncated Document Vectors 

 

The most expensive step in the clustering process occurs when the distance between the new 

document and all existing clusters is computed. This is typically done by computing the centroid 

of each cluster and measuring the cosine of the angle between the new document vector and the 

centroid of each cluster. 

Later, it was shown that clustering can be done with vectors that use only a few representative 

terms from a document . 

            One means of reducing the size of the document vector is to use Latent Semantic 

Indexing to identify the most important components.Another means is to simply truncate the 

vector by removing those terms with a weight below a given threshold. No significant difference 

in effectiveness was found for a baseline of no truncation, or using latent semantic indexing with 

twenty, fifty, and one hundred and fifty terms or simple truncation with fifty terms. 

 

2.4  N-grams 

 

Term-based search techniques typically use an inverted index or a scan of the text . Additionally, 

queries that are based on exact matches with terms in a document perform poorly against 

corrupted documents. This occurs regardless of the source of the errors-either OCR (optical 

character recognition) 

errors or those due to misspelling. To provide resilience to noise, n-grams were proposed. The 

premise is to decompose terms into word fragments of size n, then design matching algorithms 

that use these fragments to determine whether or not a match exists. 

                 N-grams have also been used for detection and correction of spelling errors and text 

compression. A survey of automatic correction techniques is found in . Additionally, n-grams 

were used to determine the authorship of documents.  

 

2.4.1 D' Amore and Mah 

 

              Initial information retrieval research focused on n-grams as presented in. The motivation 

behind their work was the fact that it is difficult to develop mathematical models for terms since 

the potential for a term that has not been seen before is infinite. With n-grams, only a fixed 

number of n-grams can exist for a given value of n. A mathematical model was developed to 

estimate the noise in indexing and to determine appropriate document similarity measures.  
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             D' Amore and Mah's method replaces terms with n-grams in the vector space model. The 

only remaining issue is computing the weights for each n-gram. Instead of simply using n-gram 

frequencies, a scaling method is used to normalize the length of the document. D' Amore and 

Mah's contention was that a large document contains more n-grams than a small document, so it 

should be scaled based on its length.  

             To compute the weights for a given n-gram, D' Amore and Mah estimated the number of 

occurrences of an n-gram in a document. The first simplifying assumption was that n-grams 

occur with equal likelihood and follow a binomial distribution. Hence, it was no more likely for 

n-gram "ABC" to occur than "DEF." The Zipfian distribution that is widely accepted for terms is 

not true for n-grams. D' Amore and Mah noted that n-grams are not equally likely to occur, but 

the removal of frequently occurring terms from the document collection resulted in n-grams that 

follow a more binomial distribution than the terms.  

             D' Amore and Mah computed the expected number of occurrences of an ngram in a 

particular document. This is the product of the number of n-grams in the document (the 

document length) and the probability that the n-gram occurs. The n-gram's probability of 

occurrence is computed as the ratio of 

its number of occurrences to the total number of n-grams in the document. D' Amore and Mah 

continued their application of the binomial distribution to derive an expected variance and, 

subsequently, a standard deviation for n-gram occurrences. The final weight for n-gram i in 

document j is: 

 
where: 

fij= frequency of an n-gram i in document j 

eij= expected number of occurrences of an n-gram i in document j 

σij  =standard deviation 

             The n-gram weight designates the number of standard deviations away from the 

expected value. The goal is to give a high weight to an n-gram that has occurred far more than 

expected and a low weight to an n-gram that has occurred only as often as expected. 

          D' Amore and Mah did several experiments to validate that the binomial model was 

appropriate for n-grams. Unfortunately, they were not able to test their approach against a term-

based one on a large standardized corpus. 

 

2.4.2 Damashek 

 

Damashek expanded on D' Amore and Mah's work by implementing a five-gram- based measure 

of relevance Damashek's algorithm relies upon the vector space model, but computes relevance 

in a different fashion.Instead of using stop words and stemming to normalize the expected 
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occurrence of n-grams, a centroid vector is used to eliminate noise. To compute the similarity 

between a query and a document, the following cosine measure is used: 

 
Here µq and µd represent centroid vectors that are used to characterize the query language and the 

document language. The weights, Wqj and Wdj indicate the term weight for each component in 

the query and the document vectors. The centroid value for each n-gram is computed as the ratio 

of the total number of occurrences of the n-gram to the total number of n-grams. This is the same 

value used by D' Amore and Mah. It is not used as an expected probability for the n-grams, but 

merely as a characterization of the n-gram's frequency across the document collection. The 

weight of a specific n-gram in a document vector is the ratio of the number of occurrences of the 

n-gram in the document to the total number of all of the n-grams in the document. This "within 

document frequency" is used to normalize based on the length of a document, and the centroid 

vectors are used to incorporate the frequency of the n-grams across the entire document 

collection. By eliminating the need to remove stop words and to support stemming, (the theory is 

that the stop words are characterized by the centroid so there was no need to eliminate them), the 

algorithm simply scans through the document and grabs n-grams without any parsing. This 

makes the algorithm language independent. Additionally, the use of the centroid vector provides 

a means of filtering out common n-grams in a document. The remaining n-grams are reverse 

engineered back into terms and used as automatically assigned keywords to describe a document.  

 

2.4.3 Pearce and Nicholas 

 

An expansion of Damashek's work uses n-grams to generate hypertext links . The links are 

obtained by computing similarity measures between a selected body of text and the remainder of 

the document. 

After a user selects a body of text, the five-grams are identified, and a vector representing this 

selected text is constructed. Subsequently, a cosine similarity measure is computed, and the top 

rated documents are then displayed to the user as dynamically defined hypertext links. The user 

interface issues surrounding hypertext is the principal enhancement over Damashek's work. The 

basic idea of constructing a vector and using a centroid to eliminate noise remains intact. 

 

2.4.4 Teufel 

 

Teufel also uses n-grams to compute a measure of similarity using the vector space model . Stop 

words and stemming algorithms are used and  advocated as a good means of reducing noise in 

the set of n-grams. However, his work varies from the others in that he used a measure of 

relevance that is intended to enforce similarity over similar documents. The premise was that if 

document A is similar to B, and B is similar to C, then A should be roughly similar to C. Typical 
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coefficients, such as inner product, Dice, or Jaccard , are non-transitive. Teufel uses a new 

coefficient, H, where:  

                                H=X +Y - (XY) 

and X is a direct similarity coefficient (in this case Dice was used, but Jaccard, cosine, or inner 

product could also have been used) and Y is an "indirect" measure that enforces transitivity. 

With the indirect measure, document A is identified as similar to document C. A more detailed 

description of the indirect 

similarity measure is given . Good precision and recall was reported for the INSPEC document 

collection. 

Language independence was claimed in spite of reliance upon stemmingand stop words. 

 

2.4.5 Cavnar and Vayda 

 

Most of this work involves using n-grams to recognize postal addresses. Ngrams were used due 

to their resilience to errors in the address. A simple scanning algorithm that counts the number of 

n-gram matches that occur between a query and a single line of text in a document was used. No 

weighting of any kind was used, but, by using a single text line, there is no need to normalize for 

the length of a document. The premise is that the relevant portion of a document appears in a 

single line of text. Cavnar's solution was the only documented approach tested on a large 

standardized corpus. For the entire TIPSTER document collection, average precision of between 

0.06 and 0.15 was reported. It should be noted that for the AP portion of the collection an 

average precision of 0.35 was obtained. These results on the AP documents caused Cavnar to 

avoid further tuning. Unfortunately, results on the entire collection exhibited relatively poor 

performance. Regarding these results, the authors claimed that,"It is unclear why there should be 

such variation between the retrievability of the AP documents and the other document 

collections." 

 

2.5 Regression Analysis 

 

Another approach to estimating the probability of relevance is to develop variables that describe 

the characteristics of a match to a relevant document. Regression analysis is then used to identify 

the exact parameters that match the training data. For example, if trying to determine an equation 

that predicts a 

person's life expectancy given their age: 

 
A simple least squares polynomial regression could be implemented, that would identify the 

correct values of a and (3 to predict life expectancy (LE) based on age (A): 
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For a given age, it is possible to find the related life expectancy. Now, if we wish to predict the 

likelihood of a person having heart disease, we might obtain the following data: 

 
We now try to fit a line or a curve to the data points such that if a new person shows up and asks 

for the chance of their having heart disease, the point on the curve that corresponds to their age 

could be examined. This second example is more analogous to document retrieval because we 

are trying to identify characteristics in a query-document match that indicate whether or not the 

document is relevant. The problem is that relevance is typically given a binary (l or 0) for 

training data-it is rare that we have human assessments that the document is "kind of" relevant. 

Note that there is a basic independence assumption that says age will not be related to life 

expectancy (an assumption we implied was false in our preceding example). Logistic regression 

is typically used to estimate dichotomous variables-those that only have a small set of values, 

(i.e., gender, heart disease present, and relevant documents).  

                Focusing on information retrieval, the problem is to find the set of variables that 

provide some indication that the document is relevant. 

 
Six variables used  are given below: 

• The mean of the total number of matching terms in the query. 

• The square root of the number of terms in the query. 

• The mean of the total number of matching terms in the document. 

• The square root of the number of terms in the document. 

• The average idf of the matching terms. 

• The total number of matching terms in the query. 

A brief overview of polynomial regression and the initial use of logistic regression is given . 

However, the use of logistic regression requires the variables used for the analysis to be 

independent. Hence, the logistic regression is given in two stages. Composite clues which are 

composed of independent variables are first estimated. Assume clues 1-3 above are found in one 

composite clue and 4-6 are in the second composite clue. The two stages proceed as follows: 

Stage 1: 

A logistic regression is done for each composite clue. 
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At this point the coefficients Co, C1, C2, C3 are computed to estimate the relevance for the 

composite clue C1. Similarly, do, d1, d2 , d3 estimate the relevance of C2. 

 

Stage 2: 

The second stage of the staged logistic regression attempts to correct for errors induced by the 

number of composite clues. As the number of composite clues grows, the likelihood of error 

increases. For N composite clues, the following logistic regression is computed:  

 
where Z is computed as the sum of the composite clues or: 

 
The results of the first stage regression are applied to the second stage. It should be noted that 

further stages are possible. Once the initial regression is completed, the actual computation of 

similarity coefficients proceeds quickly. Composite clues are only dependent on the presence or 

absence of terms in the document and can be precomputed. Computations based on the number 

of matches found in the query and the document are done at query time, but involve combining 

the coefficients computed in the logistic regression with the precomputed segments of the query. 

The question is whether or not the coefficients can be computed in a generic fashion that is 

resilient to changes in the document collection. The appealing aspects of this approach are that 

experimentation can be done to identify the best clues, and the basic independence assumptions 

are avoided. Additionally, the approach corrects for errors incurred by the initial logistic 

regression. 

 

2.6 Thesauri 

 

One of the most intuitive ideas for enhancing effectiveness of an information retrieval system is 

to include the use of a thesaurus. Almost from the dawn of the first information retrieval systems 

in the early 1960's, researchers focused on incorporating a thesaurus to improve precision and 

recall. The process of using a thesaurus to expand a query is illustrated in Figure 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in



 
A thesaurus, at first glance, might appear to assist with a key problem-two people very rarely 

describe the same concepts with the same terms (i.e., one person will say that they went to a 

party while another person might call it a gathering). This problem makes statistical measures 

that rely on the number of matches between  a query term and the document terms somewhat 

brittle when confronted with semantically equivalent terms that happen to be syntactically 

distinct. A query that asks for information about dogs is probably also interested in documents 

about canines. A document relevant to a query might not match any of the terms in the query. A 

thesaurus can be used either to assign a common term for all syn onyms of a term, or to expand a 

query to include all synonymous terms. Intuitively this should work fine, but unfortunately, 

results have not been promising. This section describes the use of hand-built thesauri, a very 

labor intensive means of building a thesaurus, as well as the quest for a sort of holy grail of 

information retrieval, an automatically generated thesaurus. 

 

2.6.1 Automatically Constructed Thesauri 

 

A hand-built thesaurus might cover general terms, but it lacks domain specific terms. A medical 

document collection has many terms that do not occur in a general purpose thesaurus. To avoid 

the need for numerous hand-built domain-specific thesauri, automatic construction methods were 

implemented. 
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2.6.1.1 Term Co-occurrence 

 

An early discussion of automatic thesaurus is to represent each term as a vector. The terms are 

then compared using a similarity coefficient that measures the Euclidean distance, or angle, 

between the two vectors. To form a thesaurus for a given term t, related terms for t are all those 

terms u such that SC(t, u) is above a given threshold. Note, this is an O(t
2
) process so it is often 

common to limit the terms for which a related term list is built. This is done by using only those 

terms that are not so frequent that they become stop terms, but not so infrequent that there is little 

chance they have many synonyms. 

Consider the following example: 

D1 : "a dog will bark at a cat in a tree" 

D2 : "ants eat the bark of a tree" 

This results in the term-document occurrence matrix found in Table 3.1 This results in the term-

document occurrence matrix found in Table . 

To compute the similarity of term i with term j, a vector of size N, where N is the number of 

documents, is obtained for each term. The vector corresponds to a row in the following table. A 

dot product similarity between "bark" and "tree" is computed as: 

 
The corresponding term-term similarity matrix is given in Table. The matrix is symmetric as 

SC(tl, t2) is equivalent to SC(t2, tl). The premise is that words are similar or related to the 

company they keep. Consider "tree" and "bark"; in our example, these terms co-occur twice in 

two documents. Hence, this pair has the highest similarity coefficient. Other simple extensions to 

this approach are the use of word stems instead of whole terms . The use of stemming is 

important here so that the term cat will not differ from cats. The tf-idf measure can be 

 

 
Term-Document matrix 
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Term-term similarity matrix 

 

used in the term-term similarity matrix to give more weight to co-occurrences between relatively 

infrequent terms. This summarizes much of the work done in the 1960's using term clustering, 

and provides some additional experiments . The common theme of these papers is that the term-

term similarity matrix can be constructed, and then various clustering algorithms can be used to 

build clusters 

of related terms.  Once the clusters are built, they are used to expand the query. Each term in  the 

original query is found in a cluster that was included in some portion or all (depending on a 

threshold) elements of its cluster. Much of the related work one during this time focused on 

different clustering algorithms and different thresholds to identify the number of terms added to 

the cluster. The conclusion 

was that the augmentation of a query using term clustering did not improve on simple queries 

that used weighted terms. 

                   A domain-specific thesaurus was constructed on information about the 

Caenorhabditis elegans worm in support of molecular biologists . A term-term similarity 

measure was built with phrases 

and terms. A weight that used tf-idfbut also included another factor Pi, was used where Pi 

indicated the number of terms in phrase i. Hence, a two-term phrase was weighted double that of 

a single term. The new weight was: 

 
Using this new weight, an asymmetric similarity coefficient was also developed. The premise 

was that the symmetric coefficients are not as useful for ranking because a measurement between 

ti  tj can become very skewed if either ti or tj occurs frequently. The asymmetric coefficient 

allows for a ranking 

of an arbitrary term ti, frequent or not, with all other terms. Applying a threshold to the list means 

that for each term, a list of other related terms is generated-and this can be done for all terms.  
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The measurement for SC(ti,tj) is given as: 

 
where dfij is the number of co-occurrences of term i with term j. Two additional weights make 

this measure asymmetric: Pj and Wj . As we have said Pj is a small weight included to measure 

the size of term j. With all other weights being equal, the measure: SC(food, apple pie) > 

SC(food, apple) since phrases are weighted higher than terms. The weighting factor, Wj , gives 

additional preference to terms that occur infrequently without skewing the relationship between 

term i and term j. The weight Wj is given as: 

 
 

Consider the term york and its relationship to the terms new and castle. Assume new occurs 

more frequently than castle. With all other weights being equal, the new weight, Wj, causes the 

following to occur: 

 
This is done without regard for the frequency of the term york. The key is that we are trying to 

come up with a thesaurus, or a list of related terms, for a given term (i.e., york). When we are 

deriving the list of terms for new we might find that york occurs less frequently than castle so we 

would have: 

                                                 SC(new, york) > SC(new, castle) 

Note that we were able to consider the relative frequencies of york and castle with this approach. 

In this case: 

                                                 SC(new, york) = SC(york, new) 

The high frequency of the term new drowns out any real difference between york and castle-or at 

least that is the premise of this approach. We note in our example, that new york would probably 

be recognized as a phrase, but that is not really pertinent to this example. Hence, at this point, we 

have defined SC(ti,tj). Since the coefficient is asymmetric we now give the definition of SC(tj, 

ti): 

 
 

A threshold was applied so that only the top one hundred terms were used for a given term. 

These were presented to a user. For relatively small document collections, users found that the 
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thesaurus assisted their recall. No testing of generic precision and recall for automatic retrieval 

was measured. 

 

2.6.1.2 Term Context 

 

Instead of relying on term co-occurrence, some work uses the context (surrounding terms) of 

each term to construct the vectors that represent each term ]. The problem with the vectors given 

above is that they do not differentiate the senses of the words. A thesaurus relates words to  

different senses. In the example given below, "bark" has two entirely different senses. A typical 

thesaurus lists "bark" as: 

 

bark-surface of tree (noun) 

bark-dog sound (verb 

                Ideally an automatically generated thesaurus would have separate lists of synonyms. 

The term-term matrix does not specifically identify synonyms, and Gauch and Wang do not 

attempt this either. Instead, the relative position of nearby terms is included in the vector used to 

represent a term . 

                The key to similarity is not that two terms happen to occur in the same document; it is 

that the two terms appear in the same context-that is they have very similar neighboring terms. 

Bark, in the sense of a sound emanating from a dog, appears in different contexts than bark, in 

the sense of a tree surface. Consider the following three sentences: 

 

s 1: "The dog yelped at the cat." 

s2 : "The dog barked at the cat." 

s3 : "The bark fell from the tree to the ground." 

 

           In sentences s1 and s2, yelped is a synonym for barked, and the two terms occur in exactly 

the same context. It is unlikely that another sense of bark would appear in the same context. 

"Bark" as a suiface of tree more commonly would have articles at one position to the left instead 

of two positions to the left, etc. 

          To capture the term's context, it is necessary to identify a set of context terms. The 

presence or absence of these terms around a given target term will determine the content of the 

vector for the target term. The authors assume the highest frequency terms are the best context 

terms, so the 200 most frequent terms (including stop terms) are used as context terms. A 

window of size seven was used. This window includes the three terms to the left of the target 

term and the three terms to the right of the target term. The new vector that represents target term 

i will be of the general form: 
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where each vector, Vi, and i = -3, -2, -1, 1,2, and 3 corresponds to a 200 element vector that 

represents the context of the target term for a given position. The vector V-3 contains a 

component for each of the 200 context terms that occur three terms to the left of the target term. 

Similarly, the vector V3 contains 

a component for each of the 200 context terms that occur three terms to the right of the target.  

              The Vi vectors are all concatenated to form the entire Ti vector for the term. For a 

simple example, we build the context vectors for the terms bark and yelp based on the document 

collection s1, s2, and s3 . To simplify the example,we assume that stemming is done to 

normalize bark and barked and that the and at are the only two context terms occupying 

components one and two, respectively, of the context vectors. For our test document collection 

we would obtain: 

 
         The matching of s1 and s2 is the driving force between the two vectors being very similar. 

The only differences occur because of the additional word sense that occurs in s3 . 

        This example uses the frequency of occurrence of a context term as the component of the 

context vectors. The authors use a measure that attempts to place more weight on context terms 

that occur 

less frequently than might be expected. The actual component value of the jth component of 

vector Vi, is a mutual information measure. Let: 

 

 
This gives a higher weight to a context term that appears more frequently with a given target 

term than predicted by the overall frequencies of the two terms. 

 

2.6.1.3 Clustering with Singular Value Decomposition 

 

         First a matrix, A, is computed for terms that occur 2000-5000 times. The matrix contains 
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the number of times these terms co-occur with a term window of size k (k is 40 in this work). 

Subsequently, these terms are clustered into 200 A-classes (group average agglomerative 

clustering is used). For example, one A-class, gAl, might have terms (tl, t2, t3) and another, gA2, 

would 

have (t4,t5). 

       Subsequently, a new matrix, B, is generated for the 20,000 most frequent terms based on 

their co-occurrence between clusters found in the matrix. For example, if term tj co-occurs with 

term tl ten times, term t2 five times, and term t4 six times, B[I, j] = 15 and B[2, j] = 6. Note the 

use of clusters has reduced the size of the B matrix and provides substantially more training 

information. The rows of B correspond to classes in A, and the columns correspond to terms. 

The B matrix is of size 200 x 20,000. The 20,000 columns are then clustered into 200 B-classes 

using the buckshot clustering algorithm] indicates the number oftimes termj co-occurs with the 

B-classes. Once this is done, the C matrix is decomposed and singular values are computed to 

represent the matrix. This is similar to the technique used for latent semantic indexing . The SVD 

is more tractable at this point since only 200 columns exist.         A document is represented by a 

vector that is the sum of the context vectors (vectors that correspond to each column in the 

SVD). The context vector is used to match a query. 

 

       Another technique that uses the context vector matrix, is to cluster the query based on its 

context vectors. This is referred to as word factorization. The queries were partitioned into three 

separate clusters. A query is then run for each of the word factors and a given document is given 

the highest rank of the three. This requires a document to be ranked high by all three factors to 

receive an overall high rank. The premise is that queries are generally about two or three 

concepts and that a relevant document has information relevant to all of the concepts. 

           Overall, this approach seems very promising. It was run on a reasonably good-sized 

collection (the Category B portion of TIPSTER using term factorization, average precision 

improved from 0.27 to 0.32-an 18.5% overall improvement). 

 

2.6.1.4 Using only Document Clustering to Generate a Thesaurus 

 

Another approach to automatically build a thesaurus is, a document clustering algorithm is 

implemented to partition the document collection into related clusters. A document-document 

similarity coefficient is used. Complete link clustering is used here, but other clustering 

algorithms could be used (for more details on clustering algorithms . The terms found in each 

cluster are then obtained. Since they occur in different documents within the cluster, different 

operators are used to obtain the set of terms that correspond to a given cluster. Consider 

documents with the following terms: 
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The cluster can be represented by the union of all the terms {t1, t2, t3, t4}, the intersection {t2}, 

or some other operation that considers the number of documents in the cluster that contain the 

term. Crouch found that simple clustering worked the best. The terms that represented the cluster 

now appear as a thesaurus class, in that they form the automatically generated thesaurus. The 

class is first reduced to obtain only the good terms. This is done by using a term discriminating 

function that is based on document frequency.  

            Queries are expanded based on the thesaurus class. Any term that occurs in the query that 

matches a term in the thesaurus class results in all terms in the class being added to the query. 

Average precision was shown to improve ten percent for the small ADI collection and fifteen 

percent for the Medlars collection. Unfortunately, both of these results were for small 

collections, and the document clustering is computationally expensive, requiring O(N
2
) time, 

where N is the number of documents in the collection. 

 

2.6.2 Use of Manually Generated Thesaurus 

 

Although a manually generated thesaurus is far more time consuming to build, several 

researchers have explored the use of such a thesaurus to improve precision and recall.  

 

2.6.2.1 Extended Relevance Ranking with Manual Thesaurus 

 

         A system developed in 1971 used computers to assist with the manual construction of a 

thesaurus at the Columbia University School of Library Service. The algorithm was essentially 

equivalent to a simple thesaurus editor. 

         Manual thesaurus construction is typically used for domain-specific thesauri. A group of 

experts is convened, and they are asked to identify the relationship between domain-specific 

terms. Ghose and Dhawle note that manual generation of these thesauri can be more difficult to 

build for social sciences than natural sciences given that there is more disagreement about the 

meaning of domain-specific terms in the social sciences . A series of handbuilt thesauri (each one 

was constructed by students) was described in . These thesauri were generated by the 

relationships between two terms-such as dog is-a animal. Ultimately the thesauri were combined 

into one that contained seven groups of relations. These groups were: 

• Antonyms 

• All relations but antonyms 

• All relations 

• Part-whole and set relations 

• Co-location relations 

• Taxonomy and synonymy relations 

• Paradigmatic relations 
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The antonym relation identified terms that were opposites of one another (e.g., night, day) and is-

part-of identifies entities that are involved in a bill-of-materials relationship (e.g., tire, 

automobile). Co-location contains relations between words that frequently co-occur in the same 

phrase or sentence. Taxonomy and synonym represent synonyms. Paradigmatic relations relate 

different forms of words that contain the same semantic core such as canine and dog. 

Experiments in adding each or all of the terms from these relations were done on a small 

document collection with relevance judgments obtained by the researchers conducting the study. 

Use of all relations, with the exception of antonyms, delivered the best average precision and 

recall, but there was little overall improvement. 

              A study done in esaurus containing three different relations: equivalence (synonym), 

hierarchical (is-a), and associative relationships . Recall of a fairly large (227,000) document 

collection composed of Finnish newspaper articles was shown to increase from 47 percent to 100 

percent while precision only decreased from 62.5 percent to 51 percent. Fortunately, the work 

was done on a large collection, however, the thesaurus  was hand-built for the test and contained 

only 1,011 concepts and a total of 1,573 terms. Only thirty queries were used, and the high 

results are clearly due to "good" terms found in the thesaurus. 

                Given the nature of the highly specific thesaurus, this result might be very similar in 

nature to the manual track of the TREC conference where participants are allowed to hand-

modify the original query to include more discriminating terms. The synonym, narrower term, 

and related term searches all showed a 10 to 20% increase in recall from a 50% baseline. The 

union search (using all values) showed a rather high fifty percent increase in average precision. 

This work does represent one of the few studies outside of the TIPSTER collection that is run on 

a sizable collection. It is not clear, however, how applicable the results are to a more general 

collection that uses a more general thesaurus. 

 

2.6.2.2 Extending Boolean Retrieval With a Hand Built Thesaurus 

 

All work described attempts to improve relevance ranking using a thesaurus. We describe the 

extensions to the extended Boolean retrieval model as a means of including thesaurus 

information in a Boolean request . A description of the extended Boolean model is found Values 

for p were attempted, and a value of six (value suggested for standard extended Boolean retrieval 

by Salton in to perform the best. Results of this approach showed slightly higher effectiveness. 

 

 

 

 

 

 

 

 

 

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in


	Information Retreval System_Part1_Part1_Part1_Part2
	Information Retreval System_Part1_Part1_Part1_Part3



