
82

Chapter 6

Exception Handling

Two common types of error in a program are:

1) Syntax error (arises due to missing semicolon, comma, and wrong prog. constructs etc)

2) Logical error (wrong understanding of the problem or wrong procedure to get the solution)

Exceptions

Exceptions are the errors occurred during a program execution. Exceptions are of two types:

� Synchronous (generated by software i.e. division by 0, array bound etc).

� Asynchronous (generated by hardware i.e. out of memory, keyboard etc).

Exception handling mechanism

� C++ exception handling mechanism is basically built upon three keywords namely, try, throw

and catch.

� Try block hold a block of statements which may generate an exception.

� When an exception is detected, it is thrown using a throw statement in the try block.

Try block

Detects and throws

exception

Catch block

Catches and handles the

exception

� A try block can be followed by any number of catch blocks.

The general form of try and catch block is as follows:

try

{

/* try block; throw exception*/

}

catch (type1 arg)

{

/* catch block*/

}

…………………….

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
1

83

…………………….

catch (type2 arg)

{

/* catch block*/

}

The exception handling mechanism is made up of the following elements:

• try blocks

• catch blocks

• throw expressions

 Write a program to find x/y, where x and y are given from the keyboard and

both are integers.

Solution:

#include<iostream.h>

void main()

{

int x, y;

cout<<”enter two number”<<endl;

cin>>x>>y;

try

{

if(y!=0)

{

z=x/y;

cout<<endl<<z;

}

else

{

throw(y);
}

}

catch(int y)

{

cout<<”exception occurred: y=”<<y<<endl;

}

}

Output:

Enter two number

6 0

exception occurred:y=0

Program 7.1

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
2

84

A try block can be localized to a function. When this is the case, each time the function is entered, the

exception handling relative to that function is reset. For example, examine this program.

#include <iostream.h>

void Xhandler(int test)

{

try

{

if(test) throw test;

}

catch(int i)

{

cout << "Caught Exception #: " << i << '\n';

}

}

void main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught Exception #: 3

End

As you can see, three exceptions are thrown. After each exception, the function returns. When the

function is called again, the exception handling is reset.

It is important to understand that the code associated with a catch statement will be executed only if it

catches an exception. Otherwise, execution simply bypasses the catch altogether. (That is, execution

never flows into a catch statement.) For example, in the following program, no exception is thrown, so

the catch statement does not execute.

#include <iostream.h>

void main()

Program 7.2

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
3

85

{

cout << "Start\n";

try

{

cout << "Inside try block\n";

cout << "Still inside try block\n";

}

catch (int i)

 {

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

}

Output:

Start

Inside try block

Still inside try block

End

Catching Class Types

An exception can be of any type, including class types that you create. Actually, in real-world programs,

most exceptions will be class types rather than built-in types. Perhaps the most common reason that

you will want to define a class type for an exception is to create an object that describes the error that

occurred. This information can be used by the exception handler to help it process the error. The

following example demonstrates this.

#include <iostream.h>

#include <cstring.h>

class MyException

{

public:

char str_what[80];

int what;

MyException() { *str_what = 0; what = 0; }

MyException(char *s, int e)

{

strcpy(str_what, s);

what = e;

Program 7.3

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
4

86

}

};

void main()

{

int i;

try {

cout << "Enter a positive number: ";

cin >> i;

if(i<0)

throw MyException("Not Positive", i);

}

catch (MyException e) { // catch an error

cout << e.str_what << ": ";

cout << e.what << "\n";

}

}

Output:

Enter a positive number: -4

Not Positive: -4

The program prompts the user for a positive number. If a negative number is entered, an object of the

class MyException is created that describes the error. Thus, MyException encapsulates information

about the error. This information is then used by the exception handler. In general, you will want to

create exception classes that will encapsulate information about an error to enable the exception

handler to respond effectively.

Using Multiple catch Statements

As stated, you can have more than one catch associated with a try. In fact, it is common to do so.

However, each catch must catch a different type of exception. For example, this program catches both

integers and strings.

#include <iostream.h>

void Xhandler(int test)

{

try

{

if(test) throw test;

else throw "Value is zero";

}

catch(int i)

{

Program 7.4

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
5

87

cout << "Caught Exception #: " << i << '\n';

}

catch(const char *str) {

cout << "Caught a string: ";

cout << str << '\n';

}

}

void main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

As you can see, each catch statement responds only to its own type.

Handling Derived-Class Exceptions

You need to be careful how you order your catch statements when trying to catch exception types that

involve base and derived classes because a catch clause for a base class will also match any class

derived from that base. Thus, if you want to catch exceptions of both a base class type and a derived

class type, put the derived class first in the catch sequence. If you don't do this, the base class catch will

also catch all derived classes. For example, consider the following program.

#include <iostream.h>

class B

{

};

class D: public B

{

};

Program 7.5

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
6

88

void main()

{

D derived;

try

{

throw derived;

}

catch(B b)

{

cout << "Caught a base class.\n";

}

catch(D d)

{

cout << "This won't execute.\n";

}

}

Here, because derived is an object that has B as a base class, it will be caught by the first catch clause

and the second clause will never execute. Some compilers will flag this condition with a warning

message. Others may issue an error. Either way, to fix this condition, reverse the order of the catch

clauses.

Exception Handling Options

There are several additional features and nuances to C++ exception handling that make it easier and

more convenient to use. These attributes are discussed here.

Catching All Exceptions

In some circumstances you will want an exception handler to catch all exceptions instead of just a

certain type. This is easy to accomplish. Simply use this form of catch.

catch (...) {

// process all exceptions

}

Here, the ellipsis matches any type of data. The following program illustrates catch (...).

#include <iostream.h>

void Xhandler(int test)

{

try

{

if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char

if(test==2) throw 123.23; // throw double

Program 7.6

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
7

89

}

catch(...)

{

cout << "Caught One!\n";

}

}

void main()

{

cout << "Start\n";

Xhandler(0);

Xhandler(1);

Xhandler(2);

cout << "End";

}

Output:

Start

Caught One!

Caught One!

Caught One!

End

Rethrowing an Exception

If you wish to rethrow an expression from within an exception handler, you may do so by calling throw,
by itself, with no exception. This causes the current exception to be passed on to an outer try/catch

sequence. The most likely reason for doing so is to allow multiple handlers access to the exception. For

example, perhaps one exception handler manages one aspect of an exception and a second handler

copes with another. An exception can only be rethrown from within a catch block (or from any function

called from within that block). When you rethrow an exception, it will not be recaught by the same

catch statement. It will propagate outward to the next catch statement. The following program

illustrates rethrowing an exception, in this case a char * exception.

#include <iostream.h>

void Xhandler()

{

try

{

throw "hello"; // throw a char *

}

catch(const char *)

{

cout << "Caught char * inside Xhandler\n";

throw ; // rethrow char * out of function

Program 7.7

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
8

90

}

}

void main()

{

cout << "Start\n";

try

{

Xhandler();

}

catch(const char *)
{

cout << "Caught char * inside main\n";

}

cout << "End";

}

Output:
Start

Caught char * inside Xhandler

Caught char * inside main

end

Understanding terminate() and unexpected()

As mentioned earlier, terminate() and unexpected() are called when something goes wrong during the

exception handling process. These functions are supplied by the Standard C++ library. Their prototypes

are shown here:

void terminate();

void unexpected();

These functions require the header <exception>.

The terminate() function is called whenever the exception handling subsystem fails to find a matching

catch statement for an exception. It is also called if your program attempts to rethrow an exception

when no exception was originally thrown. The terminate() function is also called under various other,

more obscure circumstances. For example, such a circumstance could occur when, in the process of

unwinding the stack because of an exception, a destructor for an object being destroyed throws an

exception. In general, terminate() is the handler of last resort when no other handlers for an exception

are available. By default, terminate() calls abort() .

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
9

91

Short Type Question

1. What is exception?

2. Differentiate between syntax error and logical error.

Long Type Questions

1. What is an exception? Describe the mechanism of exception handling with suitable example?

2. What is a generic catch block? What are the restrictions while using a generic catch block?

Explain with an example.

Assignment 6

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
10

