
107  

Chapter 9 

Standard Template Library 

The Standard Template Library (STL) is a C++ software library that influenced many parts of 

the C++ Standard Library It provides four components called algorithms, containers, functional and 

iterators.  The STL provides a ready-made set of common classes for C++, such 

as containers and associative arrays, that can be used with any built-in type and with any user-defined 

type that supports some elementary operations (such as copying and assignment). STL algorithms are 

independent of containers, which significantly reduces the complexity of the library. 

The STL achieves its results through the use of templates. This approach provides compile-time 

polymorphism that is often more efficient than traditional run-time polymorphism. 

Modern C++ compilers are tuned to minimize any abstraction penalty arising from heavy use of the 

STL. 

At the core of the standard template library are three foundational items: containers, algorithms, and 

iterators. These items work in conjunction with one another to provide off-the-shelf solutions to a 

variety of programming problems. 

Containers 
Containers are objects that hold other objects, and there are several different types. For example, the 

vector class defines a dynamic array, deque creates a double-ended queue, and list provides a linear 

list. These containers are called sequence containers because in STL terminology, a sequence is a linear 

list. In addition to the basic containers, the STL also defines associative containers, which allow efficient 

retrieval of values based on keys. For example, a map provides access to values with unique keys. Thus, 

a map stores a key/value pair and allows a value to be retrieved given its key. Each container class 

defines a set of functions that may be applied to the container. For example, a list container includes 

functions that insert, delete, and merge elements. A stack includes functions that push and pop values. 

Algorithms 

Algorithms act on containers. They provide the means by which you will manipulate the contents of 

containers. Their capabilities include initialization, sorting, searching, and transforming the contents of 

containers. Many algorithms operate on a range of elements within a container. 

Iterators 

Iterators are objects that are, more or less, pointers. They give you the ability to cycle through the 

contents of a container in much the same way that you would use a pointer to cycle through an array. 

There are five types of iterators:  

Iterator Access Allowed 

Random  Access Store and retrieve values. Elements may be accessed randomly.  

Bidirectional Store and retrieve values. Forward and backward moving. 

Forward Store and retrieve values. Forward moving only. 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
1



108  

Input Retrieve, but not store values. Forward moving only. 

Output  Store, but not retrieve values. Forward moving only. 

In general, an iterator that has greater access capabilities can be used in place of one that has lesser 

capabilities. For example, a forward iterator can be used in place of an input iterator. Iterators are 

handled just like pointers. You can increment and decrement them. 

You can apply the * operator to them. Iterators are declared using the iterator type defined by the 

various containers.The STL also supports reverse iterators. Reverse iterators are either bidirectional or 

random-access iterators that move through a sequence in the reverse direction. Thus, if a reverse 

iterator points to the end of a sequence, incrementing that iterator will cause it to point to one element 

before the end. 

Other STL Elements 

In addition to containers, algorithms, and iterators, the STL relies upon several other standard 

components for support. Chief among these are allocators, predicates, comparison functions, and 

function objects. Each container has defined for it an allocator. Allocators manage memory allocation 

for a container. The default allocator is an object of class allocator, but you can define your own 

allocators if needed by specialized applications. For most uses, the default allocator is sufficient. 

Several of the algorithms and containers use a special type of function called a predicate. There are two 

variations of predicates: unary and binary. A unary predicate takes one argument, while a binary 

predicate has two. 

Vectors 

Perhaps the most general-purpose of the containers is vector. The vector class supports a dynamic 

array. This is an array that can grow as needed. As you know, in C++ the size of an array is fixed at 

compile time. While this is by far the most efficient way to implement arrays, it is also the most 

restrictive because the size of the array cannot be adjusted at run time to accommodate changing 

program conditions. A vector solves this problem by allocating memory as needed. Although a vector is 

dynamic, you can still use the standard array subscript notation to access its elements. 

The template specification for vector is shown here: 

template <class T, class Allocator = allocator<T>> class vector 

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults to the 

standard allocator. vector has the following constructors: 

explicit vector(const Allocator &a = Allocator( ) ); 

explicit vector(size_type num, const T &val = T ( ), 

const Allocator &a = Allocator( )); 

vector(const vector<T, Allocator> &ob); 

template <class InIter> vector(InIter start, InIter end, 

const Allocator &a = Allocator( )); 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
2



109  

The first form constructs an empty vector. The second form constructs a vector that has num elements 

with the value val. The value of val may be allowed to default. The third form constructs a vector that 

contains the same elements as ob. The fourth form constructs a vector that contains the elements in 

the range specified by the iterators start and end. 

Any object that will be stored in a vector must define a default constructor. It must also define the < 

and == operations. Some compilers may require that other comparison operators be defined. (Since 

implementations vary, consult your compiler's documentation for precise information.) All of the built-

in types automatically satisfy these requirements. 

Although the template syntax looks rather complex, there is nothing difficult about declaring a vector. 

Here are some examples: 

vector<int> iv; // create zero-length int vector 

vector<char> cv(5); // create 5-element char vector 

vector<char> cv(5, 'x'); // initialize a 5-element char vector 

vector<int> iv2(iv); // create int vector from an int vector 

The following comparison operators are defined for vector: 

==, <, <=, !=, >, >= 

The subscripting operator [ ] is also defined for vector. This allows you to access the elements of a 

vector using standard array subscripting notation. 

                              Basic operation of a vector. 

Solution: 

#include <iostream> 

#include <vector> 

#include <cctype> 

using namespace std; 

void main () 

{ 

vector<char> v(10); // create a vector of length 10 

int i; 

// display original size of v 

cout << "Size = " << v.size() << endl; 

// assign the elements of the vector some values 

for(i=0; i<10; i++) v[i] = i + 'a'; 

// display contents of vector 

cout << "Current Contents:\n"; 

for(i=0; i<v.size(); i++) cout << v[i] << " "; 

cout << "\n\n"; 

cout << "Expanding vector\n"; 

/* put more values onto the end of the vector, 

it will grow as needed */ 

for(i=0; i<10; i++) v.push_back(i + 10 + 'a'); 

Program 9.1 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
3



110  

// display current size of v 

cout << "Size now = " << v.size() << endl; 

// display contents of vector 

cout << "Current contents:\n"; 

for(i=0; i<v.size(); i++) cout << v[i] << " "; 

cout << "\n\n"; 

// change contents of vector 

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]); 

cout << "Modified Contents:\n"; 

for(i=0; i<v.size(); i++) cout << v[i] << " "; 

cout << endl; 

} 

Output: 

Size = 10 

Current Contents: 

a b c d e f g h i j 

Expanding vector 

Size now = 20 

Current contents: 

a b c d e f g h i j k l m n o p q r s t 

Modified Contents: 

A B C D E F G H I J K L M N O P Q R S T 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
4



111  

Short Type Questions 

1. Differentiate between new and malloc. 

2. Differentiate between delete and free. 

Long Type Questions 

3. Define dynamic memory management. Explain dynamic memory management in C++ with

suitable example. 

Assignment 9 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
5




