
CHAPTER 5

The Brownian motion

The Brownian motion is the most fundamental continuous time stochastic process.
It is both a martingale of the type considered in Section 4.2 and a Gaussian process
as considered in Section 3.2. It also has continuous sample path, independent incre-
ments, and the strong Markov property of Section 6.1. Having all these beautiful
properties allows for a rich mathematical theory. For example, many probabilis-
tic computations involving the Brownian motion can be made explicit by solving
partial differential equations. Further, the Brownian motion is the corner stone of
diffusion theory and of stochastic integration. As such it is the most fundamental
object in applications to and modeling of natural and man-made phenomena.
In this chapter we define and construct the Brownian motion (in Section 5.1), then
deal with a few of the many interesting properties it has. Specifically, in Section
5.2 we use stopping time and martingale theory to study the hitting times and the
running maxima of this process, whereas in Section 5.3 we consider the smoothness
and variation of its sample path.

5.1. Brownian motion: definition and construction

Our starting point is an axiomatic definition of the Brownian motion via its Gauss-
ian property.

Definition 5.1.1. A stochastic process (Wt, 0 ≤ t ≤ T ) is called a Brownian
motion (or a Wiener Process) if:
(a) Wt is a Gaussian process
(b) E(Wt) = 0, E(WtWs) = min(t, s)
(c) For almost every ω, the sample path, t 7→Wt(ω) is continuous on [0, T ].

Note that (a) and (b) of Definition 5.1.1 completely characterize the finite dimen-
sional distributions of the Brownian motion (recall Corollary 3.2.18 that Gaussian
processes are characterized by their mean and auto-covariance functions). Adding
property (c) to Definition 5.1.1 allows us to characterize its sample path as well.
We shall further study the Brownian sample path in Sections 5.2 and 5.3. We next

establish the independence of the zero-mean Brownian increments, implying that
the Brownian motion is an example of the martingale processes of Section 4.2 (see
Proposition 4.2.3). Note however that the Brownian motion is a non-stationary
process (see Proposition 3.2.25), though it does have stationary increments.

Proposition 5.1.2. The Brownian motion has independent increments of zero-
mean.

Proof. From part (b) of Definition 5.1.1, we obtain that for t ≥ s and h > 0,

Cov(Wt+h−Wt,Ws) = E[(Wt+h−Wt)Ws] = E(Wt+hWs)−E(WtWs) = s−s = 0 .
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Sample paths of Brownian motion

Figure 1. Three sample paths of Brownian motion. The den-
sity curves illustrate that the random variable W1 has a N(0, 1)
distribution, while W2 has a N(0, 2) distribution.

Thus, Wt+h −Wt and Ws are uncorrelated for any fixed h > 0 and s ≤ t. Fixing
n < ∞ and 0 ≤ s1 < s2 < . . . < sn ≤ t, since {Wt} is a Gaussian process, we
know that (Wt+h,Wt,Ws1 , . . . ,Wsn) is a Gaussian random vector, and hence so
is X = (Wt+h −Wt,Ws1 , . . . ,Wsn) (recall Proposition 3.2.16). The vector X has
mean µ = 0 and covariance matrix Σ such that Σ0k = E(Wt+h −Wt)Wsk = 0 for
k = 1, . . . , n. In view of Definition 3.2.8 this results with the characteristic function
ΦX(θ) being the product of the characteristic function of Wt+h −Wt and that of
(Ws1 , . . . ,Wsn). Consequently, Wt+h −Wt is independent of (Ws1 , . . . ,Wsn) (see
Proposition 3.2.6). Since this applies for any 0 ≤ s1 < s2 < . . . < sn ≤ t, it can be
shown that Wt+h −Wt is also independent of σ(Ws, s ≤ t).
In conclusion, the Brownian motion is an example of a zero mean S.P. with in-
dependent increments. That is, (Wt+h −Wt) is independent of {Ws, s ∈ [0, t]}, as
stated.

We proceed to construct the Brownian motion as in [Bre92, Section 12.7]. To
this end, consider

L2([0, T ]) = {f(u) :
∫ T

0

f2(u)du <∞} ,

equipped with the inner product, (f, g) =
∫ T

0
f(u)g(u)du, where we identify f, g

such that f(t) = g(t) for almost every t ∈ [0, T ], as being the same function. As
we have seen in Example 2.2.21, this is a separable Hilbert space, and there exists
a non-random sequence of functions, {φi(t)}∞i=1 in L2([0, T ]), such that for any
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5.1. BROWNIAN MOTION: DEFINITION AND CONSTRUCTION 97

f, g ∈ L2([0, T ]),

(5.1.1) lim
n→∞

n∑

i=1

(f, φi)(g, φi) = (f, g)

(c.f. Definition 2.2.17 and Theorem 2.2.20). Let Xi be i.i.d., Gaussian R.V.-s with
EXi = 0 and EX2

i = 1, all of which are defined on the same probability space
(Ω,F ,P). For each positive integer N define the stochastic process

V N
t =

N∑

i=1

Xi

∫ t

0

φi(u)du .

Since φi(t) are non-random and any linear combination of the coordinates of a
Gaussian random vector gives a Gaussian random vector (see Proposition 3.2.16),
we see that V N

t is a Gaussian process.
We shall show that the random variables V N

t converge in L2(Ω,F ,P) to some
random variable Vt, for any fixed, non-random, t ∈ [0, T ]. Moreover, we show
that the S.P. Vt has properties (a) and (b) of Definition 5.1.1. Then, applying
Kolmogorov’s continuity theorem, we deduce that the continuous modification of
the S.P. Vt is the Brownian motion.
Our next result provides the first part of this program.

Proposition 5.1.3. Fixing t ∈ [0, T ], the sequence N 7→ V N
t is a Cauchy sequence

in the Hilbert space L2(Ω,F ,P). Consequently, there exists a S.P. Vt(ω) such that
E[(Vt − V N

t )2] → 0 as N → ∞, for any t ∈ [0, T ]. The S.P. Vt is Gaussian with
E(Vt) = 0 and E(VtVs) = min(t, s).

Proof. Fix t ∈ [0, T ], noting that for any i,

(5.1.2)

∫ t

0

φi(u)du =

∫ T

0

1[0,t](u)φi(u)du = (1[0,t], φi) .

Set V 0
t = 0 and let

ψn(t) =

∞∑

i=n+1

(1[0,t], φi)
2 .

Since E(XiXj) = 1i=j we have for any N > M ≥ 0,

E
[
(V N

t − VM
t )2

]
=

N∑

i=M+1

N∑

j=M+1

E[XiXj ](

∫ t

0

φi(u)du)(

∫ t

0

φj(u)du)

=

N∑

i=M+1

(

∫ t

0

φi(u)du)
2 = ψM (t)− ψN (t)(5.1.3)

(using (5.1.2) for the rightmost equality). Applying (5.1.1) for f = g = 1[0,t](·) we
have that for all M ,

ψM (t) ≤ ψ0(t) =

∞∑

i=1

(1[0,t], φi)
2 = (1[0,t],1[0,t]) = t <∞.

In particular, taking M = 0 in (5.1.3) we see that E[(V N
t )2] are finite for all

N . It further follows from the finiteness of the infinite series ψ0(t) that ψn(t) →
0 as n → ∞. In view of (5.1.3) we deduce that V N

t is a Cauchy sequence in
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98 5. THE BROWNIAN MOTION

L2(Ω,F ,P), converging to some random variable Vt by the completeness of this
space (see Proposition 1.3.20).
Being the pointwise (in t) limit in 2-mean of Gaussian processes, the S.P. Vt
is also Gaussian, with the mean and auto-covariance functions for Vt being the
(pointwise in t) limits of those for V N

t (c.f. Proposition 3.2.20). Recall that

E(V N
t ) =

N∑
i=1

EXi

t∫
0

φi(u)du = 0, for all N , hence E(Vt) = 0 as well.

Repeating the argument used when deriving (5.1.3) we see that for any s, t ∈ [0, T ],

E(V N
t V N

s ) =

N∑

i=1

N∑

j=1

E[XiXj ](

∫ t

0

φi(u)du)(

∫ s

0

φj(u)du) =

N∑

i=1

(1[0,t], φi)(1[0,s], φi) .

Applying (5.1.1) for f = 1[0,t](·) and g = 1[0,s](·), both in L2([0, T ]), we now have
that

E(VtVs) = lim
N→∞

E(V N
t V N

s ) = lim
N→∞

N∑

i=1

(1[0,t], φi)(1[0,s], φi)

= (1[0,t],1[0,s]) = min(t, s) ,

as needed to conclude the proof of the proposition.

Having constructed a Gaussian stochastic process Vt with the same distribution
as a Brownian motion, we next apply Kolmogorov’s continuity theorem, so as to
obtain its continuous modification. This modification is then a Brownian motion.
To this end, recall that a Gaussian R.V. Y with EY = 0,EY 2 = σ2 has moments

E(Y 2n) = (2n)!
2nn! σ

2n. In particular, E(Y 4) = 3(E(Y 2))2. Since Vt is Gaussian with

E[(Vt+h − Vt)
2] = E[(Vt+h − Vt)Vt+h]−E[(Vt+h − Vt)Vt] = h ,

for all t and h > 0, we get that

E[(Vt+h − Vt)
4] = 3[E(Vt+h − Vt)

2]2 = 3h2,

as needed to apply Kolmogorov’s theorem (with α = 4, β = 1 and c = 3 there).

Remark. There is an alternative direct construction of the Brownian motion as the
limit of time-space rescaled random walks (see Theorem 3.1.3 for details). Further,
though we constructed the Brownian motion Wt as a stochastic process on [0, T ]
for some finite T <∞, it easily extends to a process on [0,∞), which we thus take
hereafter as the index set of the Brownian motion.

The Brownian motion has many interesting scaling properties, some of which are
summarized in your next two exercises.

Exercise 5.1.4. SupposeWt is a Brownian motion and α, s, T > 0 are non-random
constants. Show the following.

(a) (Symmetry) {−Wt, t ≥ 0} is a Brownian motion.
(b) (Time homogeneity) {Ws+t −Ws, t ≥ 0} is a Brownian motion.
(c) (Time reversal) {WT −WT−t, 0 ≤ t ≤ T } is a Brownian motion.
(d) (Scaling, or self-similarity) {√αWt/α, t ≥ 0} is a Brownian motion.

(e) (Time inversion) If W̃0 = 0 and W̃t = tW1/t, then {W̃t, t ≥ 0} is a
Brownian motion.
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5.1. BROWNIAN MOTION: DEFINITION AND CONSTRUCTION 99

(f) With W i
t denoting independent Brownian motions find the constants cn

such that cn
∑n

i=1W
i
t are also Brownian motions.

Exercise 5.1.5. Fix ρ ∈ [−1, 1]. Let W̃t = ρW 1
t +

√
1− ρ2W 2

t where W 1
t and W 2

t

are two independent Brownian motions. Show that W̃t is a Brownian motion and

find the value of E(W 1
t W̃t).

Exercise 5.1.6. Fixing s > 0 show that the S.P. {Ws − Ws−t, 0 ≤ t ≤ s} and
{Ws+t − Ws, t ≥ 0} are two independent Brownian motions and for 0 < t ≤ s
evaluate qt = P(Ws > Ws−t > Ws+t).

Applying Doob’s inequality you are to prove next the law of large numbers for
Brownian motion, namely, that almost surely t−1Wt → 0 for t→ ∞ (compare with
the more familiar law of large numbers, n−1[Sn−ESn] → 0 for a random walk Sn).

Exercise 5.1.7. Let Wt be a Brownian motion.

(a) Use the inequality (4.4.6) to show that for any 0 < u < v,

E
[
( sup
u≤t≤v

|Wt|/t)2
]
≤ 4v

u2
.

(b) Taking u = 2n and v = 2n+1, n ≥ 1 in part (a), apply Markov’s inequality
to deduce that for any ǫ > 0,

P
(

sup
2n≤t≤2n+1

|Wt|/t > ǫ
)
≤ 8ǫ−22−n.

(c) Applying Borel-Cantelli lemma I conclude that almost surely t−1Wt → 0
for t→ ∞.

Many important S.P. are derived from the Brownian motion Wt. Our next two
exercises introduce a few of these processes, the Brownian bridge Bt = Wt −
min(t, 1)W1, theGeometric Brownian motion Yt = eWt , and the Ornstein-Uhlenbeck
process Ut = e−t/2Wet . We also define Xt = x+µt+σWt, a Brownian motion with
drift µ ∈ R and diffusion coefficient σ > 0 starting from x ∈ R. (See Figure 2 for
illustrations of sample paths associated with these processes.)

Exercise 5.1.8. Compute the mean and the auto-covariance functions of the pro-
cesses Bt, Yt, Ut, and Xt. Justify your answers to:

(a) Which of the processes Wt, Bt, Yt, Ut, Xt is Gaussian?
(b) Which of these processes is stationary?
(c) Which of these processes has continuous sample path?
(d) Which of these processes is adapted to the filtration σ(Ws, s ≤ t) and

which is also a sub-martingale for this filtration?

Exercise 5.1.9. Show that for 0 ≤ t ≤ 1 each of the following S.P. has the same
distribution as the Brownian bridge and explain why both have continuous modifi-
cations.

(a) B̂t = (1− t)Wt/(1−t) for t < 1 with B̂1 = 0.
(b) Zt = tW1/t−1 for t > 0 with Z0 = 0.

Exercise 5.1.10. Let Xt =
∫ t

0
Wsds for a Brownian motion Wt.

(a) Verify that Xt is a well defined stochastic process. That is, check that
ω 7→ Xt(ω) is a random variable for each fixed t ≥ 0.
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100 5. THE BROWNIAN MOTION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Brownian Bridge B
t

t

B
t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16

18

t

Y
t

Geometric Brownian Motion Y
t

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

U
t

Ornstein−Uhlenbeck process U
t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

t

X
t

Brownian Motion with drift: µ= 1, σ= 2, x= 1

Figure 2. Illustration of sample paths for processes in Exercise 5.1.8.

(b) Using Fubini’s theorem 3.3.10 find E(Xt) and E(X2
t ).

(c) Is Xt a Gaussian process? Does it have continuous sample paths a.s.?
Does it have stationary increments? Independent increments?

Exercise 5.1.11. Suppose Wt is a Brownian motion.

(a) Compute the probability density function of the random vector (Ws,Wt).
Then compute E(Ws|Wt) and Var(Ws|Wt), first for s > t, then for s < t.
Hint: Consider Example 2.4.5.

(b) Explain why the Brownian Bridge {Bt, 0 ≤ t ≤ 1} has the same distribu-
tion as {Wt, 0 ≤ t ≤ 1, conditioned upon W1 = 0} (which is the reason
for naming Bt a Brownian bridge).
Hint: Both Exercise 2.4.6 and parts of Exercise 5.1.8 may help here.

We conclude with the fractional Brownian motion, another Gaussian S.P. of con-
siderable interest in financial mathematics and analysis of computer network traffic.

Exercise 5.1.12. Fix H ∈ (0, 1). A Gaussian stochastic process {Xt, t ≥ 0}, is
called a fractional Brownian motion (or in short, fBM), of Hurst parameter H if
E(Xt) = 0 and

E(XtXs) =
1

2
[|t|2H + |s|2H − |t− s|2H ] , s, t ≥ 0.

(a) Show that an fBM of Hurst parameter H has a continuous modification
that is also locally Hölder continuous with exponent γ for any 0 < γ < H.

(b) Verify that in case H = 1/2 such modification yields the (standard) Brow-
nian motion.

(c) Show the self-similarity property, whereby for any non-random α > 0 the
process {αHXt/α} is an fBM of the same Hurst parameter H.
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5.2. THE REFLECTION PRINCIPLE AND BROWNIAN HITTING TIMES 101

(d) For which values of H is the fBM a process of stationary increments and
for which values of H is it a process of independent increments?

5.2. The reflection principle and Brownian hitting times

We start with Paul Lévy’s martingale characterization of the Brownian motion,
stated next.

Theorem 5.2.1 (Lévy’s martingale characterization). Suppose square-integrable
MG (Xt,Ft) of right-continuous filtration and continuous sample path is such that
(X2

t − t,Ft) is also a MG. Then, Xt is a Brownian motion.

Remark. The continuity of Xt is essential for Lévy’s martingale characterization.
For example, the square-integrable martingaleXt = Nt−t, withNt the Poisson pro-
cess of rate one (per Definition 6.2.1), is such that X2

t − t is also a MG (see Exercise
6.2.2). Of course, almost all sample path of the Poisson process are discontinuous.

A consequence of this characterization is that a square-integrable MG with contin-
uous sample path and unbounded increasing part is merely a time changed Brownian
motion (c.f. [KS97, Theorem 3.4.6]).

Proposition 5.2.2. Suppose (Xt,Ft) is a square-integrable martingale with X0 =
0, right-continuous filtration and continuous sample path. If the increasing part At

in the corresponding Doob-Meyer decomposition of Theorem 4.4.7 is almost surely
unbounded then Ws = Xτs is a Brownian motion, where τs = inf{t ≥ 0 : At > s}
are Ft-stopping times such that s 7→ τs is non-decreasing and right-continuous
mapping of [0,∞) to [0,∞), with Aτs = s and Xt =WAt .

Our next proposition may be viewed as yet another application of Lévy’s mar-
tingale characterization. In essence it states that each stopping time acts as a
regeneration point for the Brownian motion. In particular, it implies that the
Brownian motion is a strong Markov process (in the sense of Definition 6.1.21). As
we soon see, this “regeneration” property is very handy for finding the distribution
of certain Brownian hitting times and running maxima.

Proposition 5.2.3. If τ is a stopping time for the canonical filtration Gt of the
Brownian motion Wt then the S.P. Xt = Wt+τ −Wτ is also a Brownian motion,
which is independent of the stopped σ-field Gτ .

Remark. This result is stated as [Bre92, Theorem 12.42], with a proof that starts
with a stopping time τ taking a countable set of values and moves to the general
case by approximation, using sample path continuity. Alternatively, with the help of
some amount of stochastic calculus one may verify the conditions of Lévy’s theorem
for Xt and the filtration Ft = σ(Ws+τ −Wτ , 0 ≤ s ≤ t). We will detail neither
approach here.

We next apply Proposition 5.2.3 for computing the probability density function
of the first hitting time τα = inf{t > 0 : Wt = α} for any fixed α > 0. Since the
Brownian motion has continuous sample path, we know that τα = min{t > 0 :
Wt = α} and that the maximal value of Wt for t ∈ [0, T ] is always achieved at some
t ≤ T . Further, since W0 = 0 < α, if Ws ≥ α for some s > 0, then Wu = α for
some u ∈ [0, s], that is, τα ≤ s with Wτα = α. Consequently,

{ω :WT (ω) ≥ α} ⊆ {ω : max
0≤s≤T

Ws(ω) ≥ α} = {ω : τα(ω) ≤ T } .
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Figure 3. Illustration of the reflection principle for Brownian motion.

Recall that Xt =Wt+τα −Wτα is a Brownian motion, independent of the random
variable τα (which is measurable on Gτα). In particular, the law of Xt is invariant to
a sign-change, so we have the reflection principle for the Brownian motion, stating
that

P( max
0≤s≤T

Ws ≥ α, WT ≥ α) = P(τα ≤ T,XT−τα ≥ 0)

= P(τα ≤ T,XT−τα ≤ 0) = P( max
0≤s≤T

Ws ≥ α, WT ≤ α) .

Also, P(WT = α) = 0 and we have that

P( max
0≤s≤T

Ws ≥ α) = P( max
0≤s≤T

Ws ≥ α,WT ≥ α) +P( max
0≤s≤T

Ws ≥ α,WT ≤ α)

= 2P( max
0≤s≤T

Ws ≥ α,WT ≥ α) = 2P(WT ≥ α)(5.2.1)

= 2

∫ ∞

αT−1/2

e
−x2

2
dx√
2π

Among other things, this shows that P(τα > T ) → 0 as T → ∞, hence τα < ∞
with probability one. Further, we have that the probability density function of τα
at T is given by

(5.2.2) pτα(T ) =
∂[P(τα ≤ T )]

∂T
= 2

∂

∂T

∫ ∞

αT−1/2

e
−x2

2
dx√
2π

=
α√

2πT 3/2
e−

α2

2T .

This computation demonstrates the power of the reflection principle and more
generally, that many computations for stochastic processes are the most explicit
when they are done for the Brownian motion.
Our next exercise provides yet another example of a similar nature.

Exercise 5.2.4. Let Wt be a Brownian motion.

(a) Show that −min0≤t≤T Wt and max0≤t≤T Wt have the same distribution
which is also the distribution of |WT |.

(b) Show that the probability α that the Brownian motion Wu attains the
value zero at some u ∈ (s, s + t) is given by α =

∫∞
−∞ pt(|x|)φs(x)dx,

where pt(x) = P(|Wt| ≥ x) for x, t > 0 and φs(x) denotes the probability
density of the R.V. Ws.
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5.3. SMOOTHNESS AND VARIATION OF THE BROWNIAN SAMPLE PATH 103

Remark: The explicit formula α = (2/π) arccos(
√
s/(s+ t)) is obtained

in [KT75, page 348] by computing this integral.

Remark. Using a reflection principle type argument one gets the discrete time
analog of (5.2.1), whereby the simple random walk Sn of Definition 3.1.2 satisfies
for each integer r > 0 the identity

P( max
0≤k≤n

Sk ≥ r) = 2P(Sn > r) +P(Sn = r) .

Fixing α > 0 and β > 0 consider the stopping time τβ,α = inf{t : Wt ≥ α or
Wt ≤ −β} (for the canonical filtration of the Brownian motion Wt). By continuity
of the Brownian sample path we know that Wτβ,α

∈ {α,−β}. Applying Doob’s
optional stopping theorem for the uniformly integrable stopped martingaleWt∧τβ,α

of continuous sample path we get that P(Wτβ,α
= α) = β/(α+β) (for more details

see Exercise 4.3.18).

Exercise 5.2.5. Show that E(τβ,α) = αβ by applying Doob’s optional stopping
theorem for the uniformly integrable stopped martingale W 2

t∧τβ,α
− t ∧ τβ,α.

We see that the expected time it takes the Brownian motion to exit the interval
(−β, α) is finite for any finite α and β. As β ↑ ∞, these exit times τβ,α converge
monotonically to the time of reaching level α, namely τα = inf{t > 0 : Wt = α}.
Exercise 5.2.5 implies that τα has infinite expected value (we can see this also
directly from the formula (5.2.2) for its probability density function).

To summarize, the Brownian motion eventually reach any level, the expected time
it takes for doing so is infinite, while the exit time of any finite interval has finite
mean (and moreover, all its moments are finite).

Building on Exercises 4.2.9 and 5.2.5 here is an interesting fact about the planar
Brownian motion.

Exercise 5.2.6. The planar Brownian motion is an R2-valued stochastic process
W t = (Xt, Yt) consisting of two independent Brownian motions {Xt} and {Yt}. Let
Rt =

√
X2

t + Y 2
t denote its distance from the origin and θr = inf{t : Rt ≥ r} the

corresponding first hitting time for a sphere of radius r > 0 around the origin.

(a) Show that Mt = R2
t − 2t is a martingale for Ft = σ(Xs, Ys, s ≤ t).

Hint: Consider Proposition 2.3.17.
(b) Check that θr ≤ τr,r = inf{t : |Xt| ≥ r} and that θr is a stopping time

for the filtration Ft.
(c) Verify that {Mt∧θr} is uniformly integrable and deduce from Doob’s op-

tional stopping theorem that E[θr] = r2/2.

5.3. Smoothness and variation of the Brownian sample path

We start with a definition of the q-th variation of a function f(t) on a finite interval
t ∈ [a, b], a < b of the real line, where q ≥ 1. We shall study here only the total
variation, corresponding to q = 1 and the quadratic variation, corresponding to
q = 2.

Definition 5.3.1. For any finite partition π of [a, b], that is, π = {a = t
(π)
0 <

t
(π)
1 < . . . < t

(π)
k = b}, let ‖π‖ = maxi{t(π)i+1 − t

(π)
i } denote the length of the longest
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104 5. THE BROWNIAN MOTION

interval in π and

V
(q)
(π) (f) =

∑

i

|f(t(π)i+1)− f(t
(π)
i )|q

denote the q-th variation of f(·) on π. The q-th variation of f(·) on [a, b] is then

(5.3.1) V (q)(f) = lim
‖π‖→0

V
(q)
(π) (f) ,

provided such limit exists.

We next extend this definition to continuous time stochastic processes.

Definition 5.3.2. The q-th variation of a S.P. Xt on the interval [a, b] is the ran-
dom variable V (q)(X) obtained when replacing f(t) by Xt(ω) in the above definition,
provided the limit (5.3.1) exists (in some sense).

The quadratic variation is affected by the smoothness of the sample path. For
example, suppose that a S.P. X(t) has Lipschitz sample path with probability one.
Namely, there exists a random variable L(ω) which is finite almost surely, such that
|X(t)−X(s)| ≤ L|t− s| for all t, s ∈ [a, b]. Then,

V
(2)
(π) (X) ≤ L2

∑

i

(t
(π)
i+1 − t

(π)
i )2

≤ L2‖π‖
∑

i

(t
(π)
i+1 − t

(π)
i ) = L2‖π‖(b− a) ,(5.3.2)

converges to zero almost surely as ‖π‖ → 0. So, such a S.P. has zero quadratic
variation on [a, b].

By considering different time intervals we view the quadratic variation as yet
another stochastic process.

Definition 5.3.3. The quadratic variation of a stochastic process X, denoted

V
(2)
t (X) is the non-decreasing, non-negative S.P. corresponding to the quadratic

variation of X on the intervals [0, t].

Focusing hereafter on the Brownian motion, we have that,

Proposition 5.3.4. For a Brownian motion W (t), as ‖π‖ → 0 we have that

V
(2)
(π) (W ) → (b − a) in 2-mean.

Proof. Fixing a finite partition π, note that

E[V
(2)
(π) (W )] =

∑

i

E[(W (ti+1)−W (ti))
2]

=
∑

i

Var(W (ti+1)−W (ti)) =
∑

i

(ti+1 − ti) = b− a .

Similarly, by the independence of increments,

E[V
(2)
(π) (W )2] =

∑

i,j

E[(W (ti+1)−W (ti))
2 (W (tj+1)−W (tj))

2]

=
∑

i

E[(W (ti+1)−W (ti))
4]

+
∑

i6=j

E[(W (ti+1)−W (ti))
2]E[(W (tj+1)−W (tj))

2]
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5.3. SMOOTHNESS AND VARIATION OF THE BROWNIAN SAMPLE PATH 105

Since W (tj+1)−W (tj) is Gaussian of mean zero and variance (tj+1 − tj), it follows
that

E[V
(2)
(π) (W )2] = 3

∑

i

(ti+1−ti)2+
∑

i6=j

(ti+1−ti)(tj+1−tj) = 2
∑

i

(ti+1−ti)2+(b−a)2 .

So, Var(V
(2)
(π) (W )) = E(V

(2)
(π) (W )2)− (b− a)2 ≤ 2‖π‖(b− a) → 0 as ‖π‖ → 0. With

the mean of V
(2)
(π) (W ) being (b− a) and its variance converging to zero, we have the

stated convergence in 2-mean.

Here are two consequences of Proposition 5.3.4.

Corollary 5.3.5. The quadratic variation of the Brownian motion is the S.P.

V
(2)
t (W ) = t, which is the same as the increasing process in the Doob-Meyer de-

composition of W 2
t . More generally, the quadratic variation equals the increasing

process for any square-integrable martingale of continuous sample path and right-
continuous filtration (as shown for example in [KS97, Theorem 1.5.8, page 32]).

Remark. Since V
(2)
(π) are observable on the sample path, considering finer and finer

partitions πn, one may numerically estimate the quadratic variation for a given
sample path of a S.P. The quadratic variation of the Brownian motion is non-
random, so if this numerical estimate significantly deviates from t, we conclude
that Brownian motion is not a good model for the given S.P.

Corollary 5.3.6. With probability one, the sample path of the Brownian motion
W (t) is not Lipschitz continuous in any interval [a, b], a < b.

Proof. Fix a finite interval [a, b], a < b and let ΓL denote the set of outcomes
ω for which |W (t) −W (s)| ≤ L|t− s| for all t, s ∈ [a, b]. From (5.3.2) we see that
if ‖π‖ ≤ 1/(2L2) then

Var(V
(2)
(π) (W )) ≥ E[(V

(2)
(π) (W )− (b− a))2IΓL ] ≥

(b − a)2

4
P(ΓL) .

By Proposition 5.3.4 we know that Var(V
(2)
(π) (W )) → 0 as ‖π‖ → 0, hence necessarily

P(ΓL) = 0. As the set Γ of outcomes for which the sample path ofW (t) is Lipschitz
continuous is just the (countable) union of ΓL over positive integer values of L, it
follows that P(Γ) = 0, as stated.

We can even improve upon this negative result as following.

Exercise 5.3.7. Fixing γ > 1
2 check that by the same type of argument as above,

with probability one, the sample path of the Brownian motion is not globally Hölder
continuous of exponent γ in any interval [a, b], a < b.
In contrast, applying Theorem 3.3.3 verify that with probability one the sample
path of the Brownian motion is locally Hölder continuous for any exponent γ < 1/2
(see part (c) of Exercise 3.3.5 for a similar derivation).

The next exercise shows that one can strengthen the convergence of the quadratic
variation for W (t) by imposing some restrictions on the allowed partitions.

Exercise 5.3.8. Let V
(2)
(π) (W ) denote the approximation of the quadratic variation

of the Brownian motion for a finite partition π of [a, a + t]. Combining Markov’s
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106 5. THE BROWNIAN MOTION

inequality (for f(x) = x2) and Borel-Cantelli I show that for the Brownian motion

V
(2)
(πn)

(W )
a.s.−→ t if the finite partitions πn are such that

∑
n ‖πn‖ <∞.

In the next exercise, you are to follow a similar procedure, en-route to finding the
quadratic variation for a Brownian motion with drift.

Exercise 5.3.9. Let Z(t) = W (t) + rt, t ≥ 0, where W (t) is a Brownian motion
and r a non-random constant.

(a) What is the law of Y = Z(t+ h)− Z(t)?
(b) For which values of t′ < t and h, h′ > 0 are the variables Y and Y ′ =

Z(t′ + h′)− Z(t′) independent?

(c) Find the quadratic variation V
(2)
t (Z) of the stochastic process {Z(t)}.

Hint: See Exercise 5.3.15.

Typically, the stochastic integral It =
∫ t

0
XsdWs is first constructed in case Xt

is a “simple” process (that is having sample path that are piecewise constant on
non-random intervals), exactly as you do next.

Exercise 5.3.10. Suppose (Wt,Ft) satisfies Lévy’s characterization of the Brow-
nian motion. Namely, it is a square-integrable martingale of right-continuous fil-
tration and continuous sample path such that (W 2

t − t,Ft) is also a martingale.
Suppose Xt is a bounded Ft-adapted simple process. That is,

Xt = η01{0}(t) +
∞∑

i=0

ηi1(ti,ti+1](t) ,

where the non-random sequence tk > t0 = 0 is strictly increasing and unbounded
(in k), while the (discrete time) S.P. {ηn} is uniformly (in n and ω) bounded and

adapted to Ftn. Provide an explicit formula for At =
∫ t

0
X2

udu, then show that both

It =

k−1∑

j=0

ηj(Wtj+1 −Wtj ) + ηk(Wt −Wtk), when t ∈ [tk, tk+1) ,

and I2t − At are martingales with respect to Ft and explain why this implies that

EI2t = EAt and V
(2)
t (I) = At.

We move from the quadratic variation V (2) to the total variation V (1). Note that,
when q = 1, the limit in (5.3.1) always exists and equals the supremum over all
finite partitions π.

Example 5.3.11. The total variation is particularly simple for monotone func-
tions. Indeed, it is easy to check that if f(t) is monotone then its total variation is
V (1)(f) = maxt∈[a,b]{f(t)} −mint∈[a,b]{f(t)}. In particular, the total variation of
monotone functions is finite on finite intervals even though the functions may well
be discontinuous.

In contrast we have that

Proposition 5.3.12. The total variation of the Brownian motion W (t) is infinite
with probability one.
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5.3. SMOOTHNESS AND VARIATION OF THE BROWNIAN SAMPLE PATH 107

Proof. Let α(h) = supa≤t≤b−h |W (t+ h)−W (t)|. With probability one, the
sample pathW (t) is continuous hence uniformly continuous on the closed, bounded

interval [a, b]. Therefore, α(h)
a.s.−→ 0 as h → 0. Let πn divide [a, b] to 2n equal

parts, so ‖πn‖ = 2−n(b − a). Then,

V
(2)
(πn)

(W ) =

2n−1∑

i=0

[W (a+ (i+ 1)‖πn‖)−W (a+ i‖πn‖)]2

≤ α(‖πn‖)
2n−1∑

i=0

|W (a+ (i+ 1)‖πn‖)−W (a+ i‖πn‖)| .(5.3.3)

Recall Exercise 5.3.8, that almost surely V
(2)
(πn)

(W ) → (b − a) < ∞. This, together

with (5.3.3) and the fact that α(‖πn‖) a.s.−→ 0, imply that

V
(1)
(πn)

(W ) =
2n−1∑

i=0

|W (a+ (i+ 1)‖πn‖)−W (a+ i‖πn‖)| a.s−→ ∞,

implying that V (1)(W ) = ∞ with probability one, as stated.

Remark. Comparing Example 5.3.11 and Proposition 5.3.12 we have that the
sample path of the Brownian motion is almost surely non-monotone on each non-
empty open interval. Here is an alternative, direct proof of this result (c.f. [KS97,
Theorem 2.9.9]).

Exercise 5.3.13. Let Wt be a Brownian motion on a probability space (Ω,F ,P).

(a) Let An =
⋂n

i=1{ω ∈ Ω : Wi/n(ω) −W(i−1)/n(ω) ≥ 0} and A = {ω ∈
Ω : t 7→ Wt(ω) is non-decreasing on [0, 1]}. Explain why A = ∩nAn why
P(An) = 2−n and why it implies that A ∈ F and P(A) = 0.

(b) Use the symmetry of the Brownian motion’s sample path (per Exercise
5.1.4) to deduce that the probability that it is monotone on [0, 1] is 0.
Verify that the same applies for any interval [s, t] with 0 ≤ s < t non-
random.

(c) Show that, for almost every ω, the sample path t 7→ Wt(ω) is non-
monotone on any non-empty open interval.
Hint: Let F denote the set of ω such that t 7→ Wt(ω) is monotone on
some non-empty open interval, observing that

F =
⋃

s,t∈Q,0≤s<t

{ω ∈ Ω : t 7→Wt(ω) is monotone on [s, t]}.

To practice your understanding, solve the following exercises.

Exercise 5.3.14. Consider the stochastic process Y (t) = W (t)2, for 0 ≤ t ≤ 1,
with W (t) a Brownian motion.

(a) Show that for any γ < 1/2 the sample path of Y (t) is locally Hölder
continuous of exponent γ with probability one.

(b) Compute E[V
(2)
(π) (Y )] for a finite partition π of [0, t] to k intervals, and

find its limit as ‖π‖ → 0.
(c) Show that the total variation of Y (t) on the interval [0, 1] is infinite.

Exercise 5.3.15.
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108 5. THE BROWNIAN MOTION

(a) Show that if functions f(t) and g(t) on [a, b] have zero and finite quadratic
variations, respectively (i.e. V (2)(f) = 0 and V (2)(g) < ∞ exists), then
V (2)(g + f) = V (2)(g).

(b) Show that if a (uniformly) continuous function f(t) has finite total vari-
ation then V (q)(f) = 0 for any q > 1.

(c) Suppose both Xt and Ãt have continuous sample path, such that t 7→ Ãt

has finite total variation on any bounded interval and Xt is a square-

integrable martingale. Deduce that then V
(2)
t (X + Ã) = V

(2)
t (X).

• What follows should be omitted at first reading.

We saw that the sample path of the Brownian motion is rather irregular, for it is
neither monotone nor Lipschitz continuous at any open interval. [Bre92, Theorem
12.25] somewhat refines the latter conclusion, showing that with probability one
the sample path is nowhere differentiable.

We saw that almost surely the sample path of the Brownian motion is Hölder
continuous of any exponent γ < 1

2 (see Exercise 5.3.7), and of no exponent γ > 1
2 .

The exact modulus of continuity of the Brownian path is provided by P. Lévy’s
(1937) theorem (see [KS97, Theorem 2.9.25, page 114]):

P(lim sup
δ↓0

1

g(δ)
sup

0≤s,t≤1

|t−s|≤δ

|W (t)−W (s)| = 1) = 1,

where g(δ) =
√
2δ log(1δ ) for any δ > 0. This means that |W (t) −W (s)| ≤ Cg(δ)

for any C > 1, δ > 0 small enough (possibly depending on ω), and |t− s| < δ.

Many other “irregularity” properties of the Brownian sample path are known. For
example ([KS97, Theorem 2.9.12]), for almost every ω, the set of points of local
maximum for the path is countable and dense in [0,∞), and all local maxima are
strict (recall that t is a point of local maximum of f(·) if f(s) ≤ f(t) for all s
in some open interval around t, and it is strict if in this interval also f(s) < f(t)
except at s = t). Moreover, almost surely, the zero set of points t where W (t) = 0,
is closed, unbounded, of zero Lebesgue measure, with accumulation point at zero
and no isolated points (this is [KS97, Theorem 2.9.6], or [Bre92, Theorem 12.35]).
These properties further demonstrate just how wildly the Brownian path change
its direction. Try to visualize a path having such properties!

We know thatWt is a Gaussian R.V. of variance t. As such it has the law of
√
tW1,

suggesting that the Brownian path grows like
√
t as t→ ∞. While this is true when

considering fixed, non-random times, it ignores the random fluctuations of the path.
Accounting for these we obtain the following Law of the Iterated Logarithm,

lim sup
t→∞

Wt(ω)√
2t log(log t)

= 1, almost surely.

Since −Wt is also a Brownian motion, this is equivalent to

lim inf
t→∞

Wt(ω)√
2t log(log t)

= −1, almost surely.
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5.3. SMOOTHNESS AND VARIATION OF THE BROWNIAN SAMPLE PATH 109

Recall that tW1/t is also a Brownian motion (see Exercise 5.1.4), so the law of the
iterated logarithm is equivalent to

lim sup
t→0

Wt(ω)√
2t log(log(1t ))

= 1 & lim inf
t→0

Wt(ω)√
2t log(log(1t ))

= −1, almost surely,

providing information on the behavior of Wt for small t (for proof, see [Bre92,
Theorem 12.29]). An immediate consequence of the law of the iterated logarithm
is the law of large numbers for Brownian motion (which you have already proved
in Exercise 5.1.7).
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