
System Software 10CS52

Dept . of CSE,SJBIT Page 32

UNIT – 3

ASSEMBLERS – 2

3.1. Machine-Independent features:

These are the features which do not depend on the architecture of the machine. These
are:

 Literals

 Expressions

 Program blocks

 Control sections



Literals:

A literal is defined with a prefix = followed by a specification of the literal value.
Example:

45 001A ENDFIL LDA =C‟EOF‟ 032
-

-

93 LTORG

002D * =C‟EOF‟ 454F46

The example above shows a 3-byte operand whose value is a character string

EOF. The object code for the instruction is also mentioned. It shows the relative

displacement value of the location where this value is stored. In the example the value is

at location (002D) and hence the displacement value is (010). As another example the

given statement below shows a 1-byte literal with the hexadecimal value „05‟.

215 1062 WLOOP TD =X‟05‟ E32011

It is important to understand the difference between a constant defined as a literal

and a constant defined as an immediate operand. In case of literals the assembler

generates the specified value as a constant at some other memory location In immediate
mode the operand value is assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more

literal pools. This is usually placed at the end of the program. The assembly listing of a

program containing literals usually includes a listing of this literal pool, which shows the

assigned addresses and the generated data values. In some cases it is placed at some other

010

Smartworld.asia 1 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 33

location in the object program. An assembler directive LTORG is used. Whenever the

LTORG is encountered, it creates a literal pool that contains all the literal operands used

since the beginning of the program. The literal pool definition is done after LTORG is

encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal

table contains the literal name, operand value and length. The literal table is usually

created as a hash table on the literal name.

Implementation of Literals:

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists,

no action is taken; if it is not present, the literal is added to the LITTAB and for the

address value it waits till it encounters LTORG for literal definition. When Pass 1

encounters a LTORG statement or the end of the program, the assembler makes a scan of

the literal table. At this time each literal currently in the table is assigned an address. As

addresses are assigned, the location counter is updated to reflect the number of bytes

occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction

and replaces it with its equivalent value as if these values are generated by BYTE or

WORD. If a literal represents an address in the program, the assembler must generate a

modification relocation for, if it all it gets affected due to relocation. The following figure

shows the difference between the SYMTAB and LITTAB

3.2. Symbol-Defining Statements:

EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to

define symbols and specify their values. The directive used for this EQU (Equate). The
general form of the statement is

Smartworld.asia 2 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 34

Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to

it the value specified. The value can be a constant or an expression involving constants

and any other symbol which is already defined. One common usage is to define symbolic

names that can be used to improve readability in place of numeric values. For example

+LDT #4096

This loads the register T with immediate value 4096, this does not clearly what exactly

this value indicates. If a statement is included as:

MAXLEN EQU 4096 and then

+LDT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length

value. When the assembler encounters EQU statement, it enters the symbol MAXLEN

along with its value in the symbol table. During LDT the assembler searches the

SYMTAB for its entry and its equivalent value as the operand in the instruction. The

object code generated is the same for both the options discussed, but is easier to

understand. If the maximum length is changed from 4096 to 1024, it is difficult to change

if it is mentioned as an immediate value wherever required in the instructions. We have to

scan the whole program and make changes wherever 4096 is used. If we mention this

value in the instruction through the symbol defined by EQU, we may not have to search

the whole program but change only the value of MAXLENGTH in the EQU statement

(only once).

Another common usage of EQU statement is for defining values for the general-

purpose registers. The assembler can use the mnemonics for register usage like a-register

A , X – index register and so on. But there are some instructions which requires numbers

in place of names in the instructions. For example in the instruction RMO 0,1 instead of

RMO A,X. The programmer can assign the numerical values to these registers using

EQU directive.

A EQU 0

X EQU 1 and so on

These statements will cause the symbols A, X, L… to be entered into the symbol

table with their respective values. An instruction RMO A, X would then be allowed. As

another usage if in a machine that has many general purpose registers named as R1,

R2,…, some may be used as base register, some may be used as accumulator. Their usage

may change from one program to another. In this case we can define these requirement

using EQU statements.

BASE EQU R1

INDEX EQU R2

Smartworld.asia 3 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 35

COUNT EQU R3

One restriction with the usage of EQU is whatever symbol occurs in the right hand side

of the EQU should be predefined. For example, the following statement is not valid:

BETA EQU ALPHA

ALPHA RESW 1

As the symbol ALPHA is assigned to BETA before it is defined. The value of ALPHA is

not known.

ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive

is usually called ORG (for origin). Its general format is:
ORG value

Where value is a constant or an expression involving constants and previously defined

symbols. When this statement is encountered during assembly of a program, the

assembler resets its location counter (LOCCTR) to the specified value. Since the values

of symbols used as labels are taken from LOCCTR, the ORG statement will affect the

values of all labels defined until the next ORG is encountered. ORG is used to control

assignment storage in the object program. Sometimes altering the values may result in

incorrect assembly.

ORG can be useful in label definition. Suppose we need to define a symbol table

with the following structure:

SYMBOL 6 Bytes

VALUE 3 Bytes

FLAG 2 Bytes

The table looks like the one given below.

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word

Smartworld.asia 4 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 36

representation of the value assigned to the symbol; FLAG is a 2-byte field specifies

symbol type and other information. The space for the ttable can be reserved by the
statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the
offset value of the desired entry from the beginning of the table in the index register. To

refer to the fields SYMBOL, VALUE, and FLAGS individually, we need to assign the

values first as shown below:

SYMBOL EQU STAB

VALUE EQU STAB+6

FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a

statement:

LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB 1100

ORG STAB

SYMBOL RESB 6

VALUE RESW 1

FLAG RESB 2

ORG STAB+1100

The first statement allocates 1100 bytes of memory assigned to label STAB. In

the second statement the ORG statement initializes the location counter to the value of

STAB. Now the LOCCTR points to STAB. The next three lines assign appropriate

memory storage to each of SYMBOL, VALUE and FLAG symbols. The last ORG

statement reinitializes the LOCCTR to a new value after skipping the required number of

memory for the table STAB (i.e., STAB+1100).

While using ORG, the symbol occurring in the statement should be predefined as is

required in EQU statement. For example for the sequence of statements below:

ORG ALPHA

BYTE1 RESB 1

BYTE2 RESB 1

BYTE3 RESB 1

ORG

ALPHA RESB 1

Smartworld.asia 5 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 37

The sequence could not be processed as the symbol used to assign the new location

counter value is not defined. In first pass, as the assembler would not know what value to

assign to ALPHA, the other symbol in the next lines also could not be defined in the

symbol table. This is a kind of problem of the forward reference.

3.3 .Expressions:

Assemblers also allow use of expressions in place of operands in the instruction.

Each such expression must be evaluated to generate a single operand value or address.

Assemblers generally arithmetic expressions formed according to the normal rules using

arithmetic operators +, - *, /. Division is usually defined to produce an integer result.

Individual terms may be constants, user-defined symbols, or special terms. The only

special term used is * (the current value of location counter) which indicates the value

of the next unassigned memory location. Thus the statement

BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the buffer

area. Some values in the object program are relative to the beginning of the program and

some are absolute (independent of the program location, like constants). Hence,

expressions are classified as either absolute expression or relative expressions depending

on the type of value they produce.

Absolute Expressions: The expression that uses only absolute terms is absolute

expression. Absolute expression may contain relative term provided the relative terms
occur in pairs with opposite signs for each pair. Example:

MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not

depend on the location of the program and hence gives an absolute immaterial o the

relocation of the program. The expression can have only absolute terms. Example:

MAXLEN EQU 1000

Relative Expressions: All the relative terms except one can be paired as described in

“absolute”. The remaining unpaired relative term must have a positive sign. Example:

STAB EQU OPTAB + (BUFEND – BUFFER)

Handling the type of expressions: to find the type of expression, we must keep track the

type of symbols used. This can be achieved by defining the type in the symbol table

against each of the symbol as shown in the table below:

Smartworld.asia 6 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 38

3.4 Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the

object program in a different order by Separating blocks for storing code, data, stack, and

larger data block.

Assembler Directive USE:

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no

USE statements are included, the entire program belongs to this single block. Each

program block may actually contain several separate segments of the source program.

Assemblers rearrange these segments to gather together the pieces of each block and

assign address. Separate the program into blocks in a particular order. Large buffer area is

moved to the end of the object program. Program readability is better if data areas are

placed in the source program close to the statements that reference them.

In the example below three blocks are used :

Default: executable instructions
CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

Smartworld.asia 7 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 39

Example Code

Smartworld.asia 8 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 40

Arranging code into program blocks:
Pass 1

• A separate location counter for each program block is maintained.

• Save and restore LOCCTR when switching between blocks.

• At the beginning of a block, LOCCTR is set to 0.

• Assign each label an address relative to the start of the block.

• Store the block name or number in the SYMTAB along with the assigned relative

address of the label

• Indicate the block length as the latest value of LOCCTR for each block at the end

of Pass1

• Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

• Calculate the address for each symbol relative to the start of the object program

by adding
 The location of the symbol relative to the start of its block

 The starting address of this block





3.5 Control Sections:

A control section is a part of the program that maintains its identity after

assembly; each control section can be loaded and relocated independently of the others.
Different control sections are most often used for subroutines or other logical

subdivisions. The programmer can assemble, load, and manipulate each of these control

sections separately.

Smartworld.asia 9 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 41

Because of this, there should be some means for linking control sections together.

For example, instructions in one control section may refer to the data or instructions of

other control sections. Since control sections are independently loaded and relocated, the

assembler is unable to process these references in the usual way. Such references

between different control sections are called external references.

The assembler generates the information about each of the external references that

will allow the loader to perform the required linking. When a program is written using

multiple control sections, the beginning of each of the control section is indicated by an

assembler directive

– assembler directive: CSECT

The syntax

secname CSECT

– separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the

assembler. Symbols that are defined in one control section may not be used directly

another control section; they must be identified as external reference for the loader to

handle. The external references are indicated by two assembler directives:

EXTDEF (external Definition):

It is the statement in a control section, names symbols that are defined in this

section but may be used by other control sections. Control section names do not need to

be named in the EXTREF as they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other

control section.

The order in which these symbols are listed is not significant. The assembler must

include proper information about the external references in the object program that will

cause the loader to insert the proper value where they are required.

Smartworld.asia 10 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 42

Smartworld.asia 11 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 43

Handling External Reference

Case 1

15 0003 CLOOP +JSUB RDREC 4B100000

• The operand RDREC is an external reference.

o The assembler has no idea where RDREC is
o inserts an address of zero

o can only use extended format to provide enough room (that is, relative

addressing for external reference is invalid)

• The assembler generates information for each external reference that will allow

the loader to perform the required linking.

Case 2

190 0028 MAXLEN WORD BUFEND-BUFFER 000000

• There are two external references in the expression, BUFEND and BUFFER.

• The assembler inserts a value of zero

• passes information to the loader

• Add to this data area the address of BUFEND

• Subtract from this data area the address of BUFFER

Smartworld.asia 12 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 44

Case 3

On line 107, BUFEND and BUFFER are defined in the same control section and the

expression can be calculated immediately.

107 1000 MAXLEN EQU BUFEND-BUFFER

Object Code for the example program:

Smartworld.asia 13 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 45

The assembler must also include information in the object program that will cause the

loader to insert the proper value where they are required. The assembler maintains two

new record in the object code and a changed version of modification record.

Define record (EXTDEF)

• Col. 1 D

• Col. 2-7 Name of external symbol defined in this control section

• Col. 8-13 Relative address within this control section (hexadecimal)

• Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

• Col. 1 R

• Col. 2-7 Name of external symbol referred to in this control section

• Col. 8-73 Name of other external reference symbols

Modification record

• Col. 1 M

• Col. 2-7 Starting address of the field to be modified (hexadecimal)

• Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)

• Col.11-16 External symbol whose value is to be added to or subtracted from

the indicated field

A define record gives information about the external symbols that are defined in this
control section, i.e., symbols named by EXTDEF.

A refer record lists the symbols that are used as external references by the control section,

i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed:

Smartworld.asia 14 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 46

adding or subtracting the value of some external symbol. The symbol used for

modification my be defined either in this control section or in another section.

The object program is shown below. There is a separate object program for each

of the control sections. In the Define Record and refer record the symbols named in
EXTDEF and EXTREF are included.

In the case of Define, the record also indicates the relative address of each

external symbol within the control section.

For EXTREF symbols, no address information is available. These symbols are

simply named in the Refer record.

Smartworld.asia 15 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 47

Handling Expressions in Multiple Control Sections:

The existence of multiple control sections that can be relocated independently of

one another makes the handling of expressions complicated. It is required that in an

expression that all the relative terms be paired (for absolute expression), or that all except

one be paired (for relative expressions).

When it comes in a program having multiple control sections then we have an
extended restriction that:

• Both terms in each pair of an expression must be within the same control section

o If two terms represent relative locations within the same control section ,

their difference is an absolute value (regardless of where the control
section is located.

• Legal: BUFEND-BUFFER (both are in the same control section)

o If the terms are located in different control sections, their difference has a

value that is unpredictable.

• Illegal: RDREC-COPY (both are of different control section) it is

the difference in the load addresses of the two control sections.

This value depends on the way run-time storage is allocated; it is

unlikely to be of any use.

• How to enforce this restriction

o When an expression involves external references, the assembler cannot
determine whether or not the expression is legal.

o The assembler evaluates all of the terms it can, combines these to form an
initial expression value, and generates Modification records.

o The loader checks the expression for errors and finishes the evaluation.

3.6. ASSEMBLER DESIGN

Here we are discussing

o The structure and logic of one-pass assembler. These assemblers are used when it
is necessary or desirable to avoid a second pass over the source program.

o Notion of a multi-pass assembler, an extension of two-pass assembler that allows
an assembler to handle forward references during symbol definition.

Smartworld.asia 16 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 48

One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward references by:

• Eliminating forward reference to data items, by defining all the storage

reservation statements at the beginning of the program rather at the end.

• Unfortunately, forward reference to labels on the instructions cannot be avoided.

(forward jumping)

• To provide some provision for handling forward references by prohibiting

forward references to data items.

There are two types of one-pass assemblers:

• One that produces object code directly in memory for immediate execution

(Load-and-go assemblers).

• The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

• Load-and-go assembler generates their object code in memory for immediate
execution.

• No object program is written out, no loader is needed.

• It is useful in a system with frequent program development and testing

o The efficiency of the assembly process is an important consideration.

• Programs are re-assembled nearly every time they are run; efficiency of the
assembly process is an important consideration.

Smartworld.asia 17 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 49

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a
forward reference is encountered :

• Omits the operand address if the symbol has not yet been defined

• Enters this undefined symbol into SYMTAB and indicates that it is undefined

• Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry

• When the definition for the symbol is encountered, scans the reference list and

inserts the address.

• At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.

• For Load-and-Go assembler
o Search SYMTAB for the symbol named in the END statement and jumps

to this location to begin execution if there is no error

After Scanning line 40 of the program:

40 2021 J` CLOOP 302012

The status is that upto this point the symbol RREC is referred once at location 2013,

ENDFIL at 201F and WRREC at location 201C. None of these symbols are defined. The

figure shows that how the pending definitions along with their addresses are included in

the symbol table.

Smartworld.asia 18 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 50

The status after scanning line 160, which has encountered the definition of RDREC

and ENDFIL is as given below:

Smartworld.asia 19 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 51

If One-Pass needs to generate object code:

• If the operand contains an undefined symbol, use 0 as the address and write the

Text record to the object program.

• Forward references are entered into lists as in the load-and-go assembler.

• When the definition of a symbol is encountered, the assembler generates another
Text record with the correct operand address of each entry in the reference list.

• When loaded, the incorrect address 0 will be updated by the latter Text record

containing the symbol definition.

Object Code Generated by One-Pass Assembler:

Multi_Pass Assembler:

• For a two pass assembler, forward references in symbol definition are not
allowed:

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

o Symbol definition must be completed in pass 1.

• Prohibiting forward references in symbol definition is not a serious
inconvenience.

o Forward references tend to create difficulty for a person reading the

program.

Smartworld.asia 20 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 52

Implementation Issues for Modified Two-Pass Assembler:

Implementation Isuues when forward referencing is encountered in Symbol Defining

statements :

• For a forward reference in symbol definition, we store in the SYMTAB:

o The symbol name
o The defining expression

o The number of undefined symbols in the defining expression

• The undefined symbol (marked with a flag *) associated with a list of symbols

depend on this undefined symbol.

• When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Multi-Pass Assembler Example Program

Multi-Pass Assembler (Figure 2.21 of Beck): Example for forward reference in

Symbol Defining Statements:

Smartworld.asia 21 Smartzworld.com

System Software 10CS52

Dept . of CSE,SJBIT Page 53

Smartworld.asia 22 Smartzworld.com

