Smartworld.asia 1 Smartzworld.com

System Software 10CS52

UNIT -3

ASSEMBLERS — 2

3.1. Machine-Independent features:

These are the features which do not depend on the architecture of the machine. These
are:

= Literals

= Expressions

= Program blocks

= Control sections

Literals:
A literal is defined with a prefix = followed by a specification of the literal value.
Example:

45 001A ENDFIL LDA =CEOF’ 032[010

93 LTORG
002D * =C’EOF’ 454F46

The example above shows a 3-byte operand whose value is a character string
EOF. The object code for the instruction is also mentioned. It shows the relative
displacement value of the location where this value is stored. In the example the value is
at location (002D) and hence the displacement value is (010). As another example the
given statement below shows a 1-byte literal with the hexadecimal value ‘05°.

215 1062 WLOOP D =X0% E32011

It is important to understand the difference between a constant defined as a literal
and a constant defined as an immediate operand. In case of literals the assembler
generates the specified value as a constant at some other memory location In immediate
mode the operand value is assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more
literal pools. This is usually placed at the end of the program. The assembly listing of a
program containing literals usually includes a listing of this literal pool, which shows the
assigned addresses and the generated data values. In some cases it is placed at some other

Smartworld.asia 2 Smartzworld.com

System Software 10CS52

location in the object program. An assembler directive LTORG is used. Whenever the
LTORG is encountered, it creates a literal pool that contains all the literal operands used
since the beginning of the program. The literal pool definition is done after LTORG is
encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal
table contains the literal name, operand value and length. The literal table is usually
created as a hash table on the literal name.

Implementation of Literals:

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists,
no action is taken; if it is not present, the literal is added to the LITTAB and for the
address value it waits till it encounters LTORG for literal definition. When Pass 1
encounters a LTORG statement or the end of the program, the assembler makes a scan of
the literal table. At this time each literal currently in the table is assigned an address. As
addresses are assigned, the location counter is updated to reflect the number of bytes
occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction
and replaces it with its equivalent value as if these values are generated by BYTE or
WORD. If a literal represents an address in the program, the assembler must generate a
modification relocation for, if it all it gets affected due to relocation. The following figure
shows the difference between the SYMTAB and LITTAB

SYMTAB Hams Walue LITTAB
OOPY (4]
FIEET a Lit=ral H=x Length | Addr=as
CLOOP & Value
ENDFIL 23 " BQF " 454F4 6 3 002D
RETADR 20 HO5" o5 1 1078
LEHNETH 33
BUFFER 36
BUOFEHND 1032&
MEXLEN 100
RCREC 1032&
RLOOE 1040
EXIT lo05&
INPTIT 1o5C
WREC 105D
WLOOE 1082

3.2. Symbol-Defining Statements:

EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to
define symbols and specify their values. The directive used for this EQU (Equate). The
general form of the statement is

Smartworld.asia 3 Smartzworld.com

System Software 10CS52

Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to
it the value specified. The value can be a constant or an expression involving constants

and any other symbol which is already defined. One common usage is to define symbolic
names that can be used to improve readability in place of numeric values. For example

+LDT #4096

This loads the register T with immediate value 4096, this does not clearly what exactly
this value indicates. If a statement is included as:

MAXLEN EQU 4096 and then
+LDT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length
value. When the assembler encounters EQU statement, it enters the symbol MAXLEN
along with its value in the symbol table. During LDT the assembler searches the
SYMTAB for its entry and its equivalent value as the operand in the instruction. The
object code generated is the same for both the options discussed, but is easier to
understand. If the maximum length is changed from 4096 to 1024, it is difficult to change
if it is mentioned as an immediate value wherever required in the instructions. We have to
scan the whole program and make changes wherever 4096 is used. If we mention this
value in the instruction through the symbol defined by EQU, we may not have to search
the whole program but change only the value of MAXLENGTH in the EQU statement
(only once).

Another common usage of EQU statement is for defining values for the general-
purpose registers. The assembler can use the mnemonics for register usage like a-register
A, X —index register and so on. But there are some instructions which requires numbers
in place of names in the instructions. For example in the instruction RMO 0,1 instead of
RMO A, X. The programmer can assign the numerical values to these registers using
EQU directive.

A EQU 0

X EQU 1 and soon

These statements will cause the symbols A, X, L... to be entered into the symbol
table with their respective values. An instruction RMO A, X would then be allowed. As
another usage if in a machine that has many general purpose registers named as R1,
R2,..., some may be used as base register, some may be used as accumulator. Their usage
may change from one program to another. In this case we can define these requirement
using EQU statements.

BASE EQU R1
INDEX EQU R2

Smartworld.asia 4 Smartzworld.com

System Software 10CS52

COUNT EQU R3

One restriction with the usage of EQU is whatever symbol occurs in the right hand side
of the EQU should be predefined. For example, the following statement is not valid:

BETA EQU ALPHA
ALPHA RESW 1

As the symbol ALPHA is assigned to BETA before it is defined. The value of ALPHA is
not known.

ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive
is usually called ORG (for origin). Its general format is:

ORG value
Where value is a constant or an expression involving constants and previously defined
symbols. When this statement is encountered during assembly of a program, the
assembler resets its location counter (LOCCTR) to the specified value. Since the values
of symbols used as labels are taken from LOCCTR, the ORG statement will affect the
values of all labels defined until the next ORG is encountered. ORG is used to control
assignment storage in the object program. Sometimes altering the values may result in
incorrect assembly.

ORG can be useful in label definition. Suppose we need to define a symbol table
with the following structure:
SYMBOL 6 Bytes
VALUE 3 Bytes
FLAG 2 Bytes

The table looks like the one given below.

SYMBOL VALUE FLAGS

STAB
(100 entries)|

(

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word

Smartworld.asia 5 Smartzworld.com

System Software 10CS52

representation of the value assigned to the symbol; FLAG is a 2-byte field specifies
symbol type and other information. The space for the ttable can be reserved by the
statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the
offset value of the desired entry from the beginning of the table in the index register. To

refer to the fields SYMBOL, VALUE, and FLAGS individually, we need to assign the
values first as shown below:

SYMBOL EQU STAB

VALUE EQU STAB+6

FLAGS EQU STAB+9
To retrieve the VALUE field from the table indicated by register X, we can write a
statement:

LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB 1100
ORG STAB
SYMBOL RESB 6
VALUE RESW 1
FLAG RESB 2
ORG STAB+1100

The first statement allocates 1100 bytes of memory assigned to label STAB. In
the second statement the ORG statement initializes the location counter to the value of
STAB. Now the LOCCTR points to STAB. The next three lines assign appropriate
memory storage to each of SYMBOL, VALUE and FLAG symbols. The last ORG
statement reinitializes the LOCCTR to a new value after skipping the required number of
memory for the table STAB (i.e., STAB+1100).

While using ORG, the symbol occurring in the statement should be predefined as is
required in EQU statement. For example for the sequence of statements below:

ORG ALPHA
BYTE1 RESB 1
BYTE2 RESB 1
BYTE3 RESB 1

ORG

ALPHA RESB 1

Smartworld.asia 6 Smartzworld.com

System Software 10CS52

The sequence could not be processed as the symbol used to assign the new location
counter value is not defined. In first pass, as the assembler would not know what value to
assign to ALPHA, the other symbol in the next lines also could not be defined in the
symbol table. This is a kind of problem of the forward reference.

3.3 .Expressions:

Assemblers also allow use of expressions in place of operands in the instruction.
Each such expression must be evaluated to generate a single operand value or address.
Assemblers generally arithmetic expressions formed according to the normal rules using
arithmetic operators +, - *, /. Division is usually defined to produce an integer result.
Individual terms may be constants, user-defined symbols, or special terms. The only
special term used is * (the current value of location counter) which indicates the value
of the next unassigned memory location. Thus the statement

BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the buffer
area. Some values in the object program are relative to the beginning of the program and
some are absolute (independent of the program location, like constants). Hence,
expressions are classified as either absolute expression or relative expressions depending
on the type of value they produce.

Absolute Expressions: The expression that uses only absolute terms is absolute
expression. Absolute expression may contain relative term provided the relative terms
occur in pairs with opposite signs for each pair. Example:

MAXLEN EQU BUFEND-BUFFER
In the above instruction the difference in the expression gives a value that does not
depend on the location of the program and hence gives an absolute immaterial o the
relocation of the program. The expression can have only absolute terms. Example:

MAXLEN EQU 1000

Relative Expressions: All the relative terms except one can be paired as described in
“absolute”. The remaining unpaired relative term must have a positive sign. Example:

STAB EQU OPTAB + (BUFEND — BUFFER)

Handling the type of expressions: to find the type of expression, we must keep track the
type of symbols used. This can be achieved by defining the type in the symbol table
against each of the symbol as shown in the table below:

Smartworld.asia 7 Smartzworld.com

System Software 10CS52
Sy Type Walus
RETADR R 0030
BUFFER R 00385
BLIFERND R 1038
fMAXLERM & 1000

3.4 Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the
object program in a different order by Separating blocks for storing code, data, stack, and
larger data block.

Assembler Directive USE:

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no
USE statements are included, the entire program belongs to this single block. Each
program block may actually contain several separate segments of the source program.
Assemblers rearrange these segments to gather together the pieces of each block and
assign address. Separate the program into blocks in a particular order. Large buffer area is
moved to the end of the object program. Program readability is better if data areas are
placed in the source program close to the statements that reference them.

In the example below three blocks are used :
Default: executable instructions
CDATA: all data areas that are less in length
CBLKS: all data areas that consists of larger blocks of memory

CDATA

CBLKS

Smartworld.asia 8 Smartzworld.com

System Software 10CS52
Example Code
(default) block - Block number
- {0000/ 0* COPY START 0
0000 0 FIRST STL RETADR 172063
0003 0 CLOOF JSUB RDREC 4B2021
0006 0 LDA LENGTH 032060
0009 0 COMP #0 280000
000cC 0 JEQ ENDFIL 332008
000F 0 JSUB WRREC 4B203B
0012 0 J CLOOP 3F2FEE
0015 0 ENDFIL LDA =C'EOF 032055
o018 0 S5TA BUFFER 0F2056
001B 0 LDA #3 010003
001E 0 STA LENGTH 0F2043
0021 0 JSUB WRREC 4B2029
0024 _ 0 J @RETADR 3E203F
10000 | 1 USE CDATA 4 CDATA block
- 0000 1 RETADR RESW 1
0003 1 LENGTH RESW 1
10000 | 2 USE CBLKS «—— CBLKS block
iy 2 BUFFER RESE 4046
1000 2 BUFEND EQU *
1000 MAXLEN EQU BUFEND-BUFFER
I (default) block
| 0027 ! 0 RDREC USE 4
ooz2ry 0 CLEAR x B410
0029 0 CLEAR A B400
002B 0 CLEAR s B440
002D 0 +LOT HFMAXLEN 75101000
0031 0 RLOOF TD INFUT E32038
0034 0 JEQ RLOOP 332FFA
Q037 0 RD INFUT DB2032
0034 0 COMPR ALS A004
0o3c 0 JEQ EXIT 332008
003F 0 STCH BUFFER,X 5TAOZF
Qo042 0 TIXR T Ba50
0044 0 JLT RLOOFP 3B2FEA
o047y 0 EXIT STX LENGTH 13201F
004A 0 RSUB 4F0000
(0006 | 1 _USE_ CDATA* —CDATA block
0006 1 INFUT BYTE XE1 F1

Smartworld.asia

9 Smartzworld.com

System Software 10CS52
(default) block
I""“"‘ -‘.
004D, 0 _USE_
004D 0 WRREC CLEAR X B410
004F 0 LDT LENGTH 772017
0052 0 WLOOF TD =X'0& E3201B
0055 0 JEQ WLOOFP J32FFA
0058 0 LDCH BUFFER X 53A016
005B 0 wD =X'0& DF2012
00s5E 0 TIXR T B850
0060 0 JLT WLOOFP JB2FEF
0063 0 RSUB 4F0000
(0007} 1 _USE_ CDATA <~ CDATA block
LTORG
oooy 1 * =C'EQF 454F46
000A 1 * =X'05 05
END FIRST

Arranging code into program blocks:

Pass 1

Pass 2

A separate location counter for each program block is maintained.

Save and restore LOCCTR when switching between blocks.

At the beginning of a block, LOCCTR is set to 0.

Assign each label an address relative to the start of the block.

Store the block name or number in the SYMTAB along with the assigned relative
address of the label

Indicate the block length as the latest value of LOCCTR for each block at the end
of Passl

Assign to each block a starting address in the object program by concatenating the
program blocks in a particular order

Calculate the address for each symbol relative to the start of the object program
by adding

» The location of the symbol relative to the start of its block

» The starting address of this block

3.5 Control Sections:

A control section is a part of the program that maintains its identity after

assembly; each control section can be loaded and relocated independently of the others.
Different control sections are most often used for subroutines or other logical
subdivisions. The programmer can assemble, load, and manipulate each of these control
sections separately.

Smartworld.asia 10 Smartzworld.com

System Software 10CS52

Because of this, there should be some means for linking control sections together.
For example, instructions in one control section may refer to the data or instructions of
other control sections. Since control sections are independently loaded and relocated, the
assembler is unable to process these references in the usual way. Such references
between different control sections are called external references.

The assembler generates the information about each of the external references that
will allow the loader to perform the required linking. When a program is written using
multiple control sections, the beginning of each of the control section is indicated by an
assembler directive

— assembler directive: CSECT
The syntax
secname CSECT
— separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly
another control section; they must be identified as external reference for the loader to
handle. The external references are indicated by two assembler directives:

EXTDEF (external Definition):

It is the statement in a control section, names symbols that are defined in this
section but may be used by other control sections. Control section names do not need to
be named in the EXTREF as they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other
control section.
The order in which these symbols are listed is not significant. The assembler must
include proper information about the external references in the object program that will
cause the loader to insert the proper value where they are required.

Smartworld.asia

System Software

11

Smartzworld.com

10CS52

- Implicitly defi

ned as an external symbol

A ___ first control section
COPY START4 0
EXTDEF ___BUFFER,BUFEND,LENGTH
EXTREF _ RDREC,WRREC
FIRST STL RETADR
CLOOP [+suB RDREC
LDA LENGTH
COMP #D
JEQ ENDFIL
[+h1suB WRREC
1 CLOOP
ENDFIL LDA =C'EOF’
STA BUFFER
LDA #3
STA LENGTH
[+hsuB WRREC
1 @RETADR
RETADR RESW 1
LENGTH RESW 1
LTORG
BUFFER RESB 4096
BUFEND EQU *
MAXLEN EQU BUFFEND-BUFFER
Implicitly defined as an external symbo
.y - csect . second control section
SUBROUTINE TO READ RECORD INTO BUFFER
EXTREF BUFFER,LENGTH,BUFFEND
CLEAR X
CLEAR A
CLEAR 5
LDT MAXLEN
RLOOP TD INPUT
JEQ RLOOP
RD INPUT
COMPR AS
JEQ EXIT
+STCH _BUFFER,X
TIXR T
T RLOOP
EXIT +STX LENGTH
RSUB
INPUT BYTE XF1’
MAXLEN WORD BUFFEND-BUFFER

COPY FILE FROM INPUT TO OUTPUT

SAVE RETURN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH=0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD
LOOP

INSERT END OF FILE MARKER
SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096-BYTE BUFFER AREA

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE
LOOP UNTIL READY

READ CHARACTER INTO REGISTER A
TEST FOR END OF RECORD (X'00")

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAX LENGTH HAS

BEEN REACHED
SAVE RECORD LENGTH
RETURN TO CALLER
CODE FOR INPUT DEVICE

Smartworld.asia 12 Smartzworld.com

System Software 10CS52

Implicitly defined as an external symbol
_third control section

&
WRREC CSECT &

SUBROUTINE TO WRITE RECORD FROM BUFFER

[EXTREF __ LENGTH,BUFFER |

CLEAR X CLEAR LOOP COUNTER

+LDT LENGTH

WLOOP TD =X'05" TEST OUTPUT DEVICE

JEQ WLOOP LOOP UNTIL READY

+LDCH BUFFER, X GET CHARACTER FROM BUFFER
WD =X'05" WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
LT WLOOP BEEN WRITTEN
RSUB RETURN TQO CALLER
END FIRST

Handling External Reference
Casel

15 0003 CLOOP +JSUB RDREC 4B100000
e The operand RDREC is an external reference.

o The assembler has no idea where RDREC is

o inserts an address of zero

o canonly use to provide enough room (that is, relative
addressing for external reference is invalid)

< The assembler generates information for each external reference that will allow
the loader to perform the required linking.

Case 2
190 0028 MAXLEN WORD BUFEND-BUFFER 000000

< There are two external references in the expression, BUFEND and BUFFER.
e The assembler inserts a value of zero

» passes information to the loader

< Add to this data area the address of BUFEND

e Subtract from this data area the address of BUFFER

Smartworld.asia

13 Smartzworld.com
System Software 10CS52
Case 3
On line 107, BUFEND and BUFFER are defined in the same control section and the
expression can be calculated immediately.
107 1000 MAXLEN EQU BUFEND-BUFFER
Object Code for the example program:
[01RN]H] COopPY START 0]
EXTDEF BUFFER,BUFFEND,LENGTH
EXTREF RDREC,WRREC
0000 FIRST STL RETADR 172027
o003 CLOOP +JSUB RDREC 48100000 Case 1
0007 LDA LENGTH 032023
000A COMP #() 290000
000D JEQ ENDFIL 332007
0010 +1SUB WRREC 48100000
0014) CLOOP 3F2FEC
o017 ENDFIL LDA =C'EQOF' 032016
001A STA BUFFER OF2016
001D LDA #3 010003
0020 STA LENGTH OF2004
0023 +]SUB WRREC 48100000
0027] @RETADR 3E2000
(02A RETADR RESW 1
002D LENGTH RESW 1
LTORG
0030 # =C'EOF 454F46
0033 BUFFER RESB 4096
1033 BUFEND EQU *
1000 MAXLEN EQU BUFEND-BUFFER
0000 RDREC CSECT
SUBROUTINE TO READ RECORD INTO BUFFER
EXTREF BUFFER,LENGTH,BUFEND
Q000 CLEAR X B410
0002 CLEAR A B400
0004 CLEAR S B440
0006 LDT MAXLEN 77201F
0009 RLOOP TD INPUT E32018
onoc JEQ RLOOP 332FFA
O00F RD INPUT DB2015
0012 COMPR A,S ADO4
0014 JEQ EXIT 332009
0017 +STCH BUFFER, X 57900000
001B TIXR T B850
001D T RLOOP 3B2FE9
0020 EXIT +5TX LENGTH 13100000
0024 RSUB 4F0000
0027 INPUT BYTE X'F1’ Fi
0028 MAXLEN ~ WORD BUFFEND-BUFFER Case 2

Smartworld.asia 14 Smartzworld.com

System Software 10CS52

0000 WRREC CSECT

SUBROUTINE TO WRITE RECORD FROM BUFFER.

EXTREF LENGTH,BUFFER
0000 CLEAR X B410
0002 +LDT LENGTH 77100000 |
0006 WLOOP D =X"05 E32012
0009 JEQ WLOOP 332FFA
000c +LDCH BUFFER, X 53900000
0010 WD =X'05 DF2008
0013 TIXR T B850
o015 LT WLOOP 3BZFEE
0018 RSUB 4F0000
END FIRST
0018 * =X05 05

The assembler must also include information in the object program that will cause the
loader to insert the proper value where they are required. The assembler maintains two
new record in the object code and a changed version of modification record.

Define record (EXTDEF)

« Col.1 D
e Col. 2-7 Name of external symbol defined in this control section
e Col. 8-13 Relative address within this control section (hexadecimal)

 Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

« Col.1 R
e Col. 2-7 Name of external symbol referred to in this control section
« Col.8-73 Name of other external reference symbols

Modification record

« Col.1 M
e Col. 2-7 Starting address of the field to be modified (hexadecimal)
e Col. 89 Length of the field to be modified, in half-bytes (hexadecimal)

e Col.11-16 External symbol whose value is to be added to or subtracted from
the indicated field
A define record gives information about the external symbols that are defined in this
control section, i.e., symbols named by EXTDEF.

A refer record lists the symbols that are used as external references by the control section,
i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed:

Smartworld.asia 15 Smartzworld.com
System Software 10CS52

adding or subtracting the value of some external symbol. The symbol used for
modification my be defined either in this control section or in another section.

The object program is shown below. There is a separate object program for each
of the control sections. In the Define Record and refer record the symbols named in
EXTDEF and EXTREF are included.

In the case of Define, the record also indicates the relative address of each
external symbol within the control section.

For EXTREF symbols, no address information is available. These symbols are
simply named in the Refer record.

COPY

HGOPY 000000001033

DBUFFERQ00033BUFENDO01033LENGTHO0002D |

RRDREC WRREC|

10000001 D] 72027481000000320232900003320074B1000003F 2FEC0320160F2016
T00001DODO100030F200A4B1000003E2000

T00003003454F 46
M00000405+RDREC
M00001105+WRREC
M00002405+WRREC
EQ00000

RDREC

HRDREC 000000000028
RBUFFERLENGTHBUFEND

T000000 DB410B400B44077201FE3201B332FFADB2015A004332009579000008850
T00001DOE3B2FEQ] 31000004F000QF 1000000

N00001805+BUFFER
M00002105+LENGTH
N00002806+BUFEND
N00002806-BUFFER

F

WRREC

HWRREC 00000000001C
RLENGTHBUFFER
T0000001 GB41077100000E3201232FFA53900000DF2008B8503B2F EE4F000005
M00000305+LENGTH

N0000ODO5+BUFFER

E

BUFEND - BUFFER

Smartworld.asia 16 Smartzworld.com

System Software 10CS52

Handling Expressions in Multiple Control Sections:

The existence of multiple control sections that can be relocated independently of
one another makes the handling of expressions complicated. It is required that in an
expression that all the relative terms be paired (for absolute expression), or that all except
one be paired (for relative expressions).

When it comes in a program having multiple control sections then we have an
extended restriction that:

< Both terms in each pair of an expression must be within the same control section
o If two terms represent relative locations within the same control section ,
their difference is an absolute value (regardless of where the control

section is located.

e Legal: BUFEND-BUFFER (both are in the same control section)

o If the terms are located in different control sections, their difference has a
value that is unpredictable.
< lllegal: RDREC-COPY (both are of different control section) it is
the difference in the load addresses of the two control sections.
This value depends on the way run-time storage is allocated; it is
unlikely to be of any use.

» How to enforce this restriction
o When an expression involves external references, the assembler cannot
determine whether or not the expression is legal.
o The assembler evaluates all of the terms it can, combines these to form an
initial expression value, and generates Modification records.
o The loader checks the expression for errors and finishes the evaluation.

3.6. ASSEMBLER DESIGN

Here we are discussing

o The structure and logic of one-pass assembler. These assemblers are used when it
IS necessary or desirable to avoid a second pass over the source program.

o Notion of a multi-pass assembler, an extension of two-pass assembler that allows
an assembler to handle forward references during symbol definition.

Smartworld.asia 17 Smartzworld.com

System Software 10CS52

One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward
references. We can avoid to some extent the forward references by:
< Eliminating forward reference to data items, by defining all the storage
reservation statements at the beginning of the program rather at the end.
= Unfortunately, forward reference to labels on the instructions cannot be avoided.
(forward jumping)
= To provide some provision for handling forward references by prohibiting
forward references to data items.

There are two types of one-pass assemblers:
» One that produces object code directly in memory for immediate execution
(Load-and-go assemblers).
< The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

« Load-and-go assembler generates their object code in memory for immediate
execution.
< No object program is written out, no loader is needed.
« Itis useful in a system with frequent program development and testing
o The efficiency of the assembly process is an important consideration.
< Programs are re-assembled nearly every time they are run; efficiency of the
assembly process is an important consideration.

Smartzworld.com

10CS52

Smartworld.asia 18
System Software
Line Loc Source statement Object code
0 \) ‘OPY STA
d: 1000 EOF BYTE)k 15474 ¢
100 'HRET JORL U00C
100¢ ERC RL 0
: RETADR RES A
5 00C LENGTH 1
o QO0F BUFF1 SB 4096
10 2001 FI STL RETAD! 14100
15 201 CLOOE TSUF RDREC | 4820
\C 01% DA ENGTH)0
4 2018 COMP ZERC I
0 01 JEC ENDF I 302024
5 01r TSUE WR? 4820
! 2021 CLOOP []
4 2024 ENDFIL" EOF 0]
5 027 TA BUFFE 00F
6 D STA f i‘ |
6 2030 TSUB 1820
7 IDL RETADR 08100¢

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a

forward reference is encountered :

< Omits the operand address if the symbol has not yet been defined

< Enters this undefined symbol into SYMTAB and indicates that it is undefined
< Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry

= When the definition for the symbol is encountered, scans the reference list and

inserts the address.

< At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.
e For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps

to this location to begin execution if there is no error

After Scanning line 40 of the program:
40 2021 J CLOOP

302012

The status is that upto this point the symbol RREC is referred once at location 2013,
ENDFIL at 201F and WRREC at location 201C. None of these symbols are defined. The

figure shows that how the pending definitions along with their addresses are included in

the symbol table.

Smartworld.asia 19 Smartzworld.com

SysemSofware 10082 _
r:d"r'::! Contents Symbol Value
1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C
1010 XXXXXXXX XXXXXXXX XKXXXXXXX XXXXXXXX RDREC * | o 2013 | 0
: —[THREE |1003 —
20.00 XXXXXXKK — XXXKKKKX Axxi)gaci);;);)_(XXXxxx14 ZERO 1006
gg;g lggi:?oomoc 28100630 ‘E«#EL_ Lt e lalcal 357 | §
: “{EOF__|1000
. ENDFIL | * | e4—1 201C| 0

RETADR |1009

BUFFER | 100F

CLOOP 2012

FIRST 200F

The status after scanning line 160, which has encountered the definition of RDREC
and ENDFIL is as given below:

Memory Symbol Value
addr
ess Contents LENGTH | 100C
1000 454F4600 00030000 OOXXXXXX XXXXXXXX RDREC | 203D
1010 AXXXXXAX XXXXXXAX XXXXXXAX XAXXXXXX —F
® ___—THREE | 1003
: ZERO | 1006
2000 XXXXXXXX XEXARRAR XXXXXXKX Xxxxxx14
2010 10094820 _3Boor00c 28100630 72_0214@4—— WAREC- |+-| o-—b{ 201F | o—»{ 20310
2020 3C2012 0010000C 100F0010_ o!)e-l-a_‘ = EOF | 1000
2030 4 T0094C00 O00F10010 00041006 ——t—
2040 001006E0 20393020 43DB2039 28100630 ENDFIL__| 2024
2050 400 oF]
. RETADR | 1009
b 7-77'"\.
. BUFFER | 100F
‘ CLOOP | 2012
FIRST 200F
[maxLEN | 203a
INPUT [Z039.|
EXIT * | e+— 2050 [0
RLOOP | 2043

Smartworld.asia 20 Smartzworld.com

System Software 10CS52

If One-Pass needs to generate object code:

« |If the operand contains an undefined symbol, use 0 as the address and write the
Text record to the object program.

< Forward references are entered into lists as in the load-and-go assembler.

< When the definition of a symbol is encountered, the assembler generates another
Text record with the correct operand address of each entry in the reference list.

« When loaded, the incorrect address 0 will be updated by the latter Text record
containing the symbol definition.

Object Code Generated by One-Pass Assembler:

%FOPY EOIDOqPUIOTA

nglOGQP%&SQFﬁﬁpOODO%POOODO

T00200E151410094800000010062810063000004800003¢2012
[T00201C022024 |
1000

T002024190010000C100F0010030C100C4800000810094C0000F100
T00201302203D

4
T00203D1E041006001006E02039302043D08203928100630000054900F2C2034382043
1002050022058
T00205B80710100C4C000005
T00201F022062
T002031022062
T00206218041006E0206130206550900EDC20612€10063820654C0000

%POZOOF

Multi_Pass Assembler:

» For a two pass assembler, forward references in symbol definition are not
allowed:
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1
o Symbol definition must be completed in pass 1.
» Prohibiting forward references in symbol definition is not a serious
inconvenience.
o Forward references tend to create difficulty for a person reading the
program.

Smartworld.asia 21

System Software

Smartzworld.com

10CS52

Implementation Issues for Modified Two-Pass Assembler:

Implementation Isuues when forward referencing is encountered in Symbol Defining

statements :

< For a forward reference in symbol definition, we store in the SYMTAB:
o The symbol name
o The defining expression
o The number of undefined symbols in the defining expression

< The undefined symbol (marked with a flag *) associated with a list of symbols

depend on this undefined symbol.

< When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Multi-Pass Assembler Example Program

mbols 1n the

of undefined sy

defining

expression

The defining expression

3 BUFENI

8

== —~
HALFSZ |&1| MAXLEN/2

Depe

[—s{rarsz [o]

ndimng list

MAXLEN | *

T

Undefined symbol

BUFEND-BUFF

BUFFER

Multi-Pass Assembler (Figure 2.21 of Beck): Example for forward reference in

Symbol Defining Statements:

Smartworld.asia

System Software

22

Smartzworld.com

10CS52

*
1

BUFEND [

s fien [1

HALFSZ l&l I MAXLEN/2 IB

MAXLEN [&2 BUFEND-BUFFER [0-—0{ HALFSZ | 0]

BUFFER [F—D{MAXLEN I B}

2 MAXLEN EQU BUFEND-BUFFER

BUFEND] * [o——»‘ MAXLEN [o'

HALFSZ [&l[MAXLEN/2 I 0

PREVBT I 1033 I 0

MAXLEN I&1|8UFEND-BUFFEH [.——»{ HALFSZ |a]

BUFFER 11034]0

4 BUFFER RESB 4096

BUFEND] *

[—s{wacen o]

HALFSZ |&1 [MAXLEN/2

[o

PREVET I&l [BUFFER-1

[o

MAXLEN l&?i BUFEND-BUFFER .——b{ HALFSZ |0

BUFFER l *

O-—’LMAXLEN | O-HLPREVBT lo—l
3 PREVBT EQU BUFFER-1
BUFEND [2034 l 0
HALFSZ l B0O l [}
PREVBT I 1033 0
MAXLEN [1000 Jo
BUFFER] 1034 10
5 BUFEND EQU &

