
 
Simplifying the topology 
Domain testing overview 
 Domains are defined by their boundaries; therefore, domain testing concentrates test points on or near 

boundaries. 
 

 

 Classify what can go wrong with boundaries, then define a test strategy for each case. Pick enough points to 
test for all categorized kinds of boundary errors. 

 
 

 Run the tests by post test analysis determine if any boundaries are faulty and if so, how. 
 

 

 Run enough tests to verify every boundary of every domain. 
 

 
Domain bugs and how to test for them 

 
 An interior point is a point in the domain such that all points with in an arbitrarily small distance are also in 

the domain. 
 

 

 A boundary point is one such that within an epsilon neighborhood there are points both in the domain and 
not in the domain. 

 
 

 An extreme point is a point that does not lie between any two other arbitrary but distinct points of a domain. 
  

 An on point is a point on the boundary. 
 

 

 If the domain boundary is closed, an off point is a point near the boundary but in the adjacent domain. 
 

 

 If the domain is open, an off point is a point near the boundary but in the domain being tested. 
 

 

Generic Domain Bugs 

 
 The generic domain Bugs are: shifted boundaries, tilted boundaries, open/closed errors, extra boundary and 

missing boundary. 
 

 
 

  
 

 

 

 

Shifted Boundaries 

 
 
 
 
 
Tilted Boundaries 

 
 
 
 
 
                                       Open/closed error 

 
 
 
 
 

  
                                         Extra boundary 

 
 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
1



 
 
 
 
 
 
                                       Missing Boundary 

 
 
Testing one dimensional domains-open boundaries 

 
Procedure for Testing 

 
 The procedure is conceptually is straight forward. 

 

 

 It can be done by hand for two dimensions and for a few domains and practically impossible for more than 

two variables. 
 

 1. identify input variables. 
 

 

 2. identify variable which appear in domain defining predicates, such as control flow predicates. 
 

 3. interpret all domain predicates in terms of input variables. 
 

 

 4. for p binary predicates, there are at most 2
p
 combinations of TRUE-FALSE values and therefore, at most 

2
p
 domains. Find the set of all non null domains. the result is a boolean expression in the predicates 

consisting a set of AND terms joined by OR‘s. for example ABC+DEF+GHI….. Where the capital letters 

denote predicates. Each product term is a set of linear inequality that defines a domain or a part of a multiply 

connected domains. 
 

 

 5. Solve these inequalities to find all the extreme points of each domain using any of the linear programming 

methods. 
 

 

   

 

UNIT  V : 

Paths, Path products and Regular expressions : Path products & path expression, reduction procedure, 

applications, regular expressions & flow anomaly detection. 

PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS 

This unit gives an in depth overview of Paths of various flow graphs, their interpretations and application. 

PATH PRODUCTS AND PATH EXPRESSION: 

 MOTIVATION:  

o Flow graphs are being an abstract representation of programs. 

o Any question about a program can be cast into an equivalent question about an appropriate 

flowgraph. 

o Most software development, testing and debugging tools use flow graphs analysis techniques. 

 PATH PRODUCTS:  

o Normally flow graphs used to denote only control flow connectivity. 

o The simplest weight we can give to a link is a name. 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
2



o Using link names as weights, we then convert the graphical flow graph into an equivalent 

algebraic like expressions which denotes the set of all possible paths from entry to exit for the 

flow graph. 

o Every link of a graph can be given a name. 

o The link name will be denoted by lower case italic letters. 

o In tracing a path or path segment through a flow graph, you traverse a succession of link names. 

o The name of the path or path segment that corresponds to those links is expressed naturally by 

concatenating those link names. 

o For example, if you traverse links a,b,c and d along some path, the name for that path segment is 

abcd. This path name is also called a path product. Figure 5.1 shows some examples:  

 

Figure 5.1: Examples of paths. 

 PATH EXPRESSION:  

o Consider a pair of nodes in a graph and the set of paths between those node. 

o Denote that set of paths by Upper case letter such as X,Y. From Figure 5.1c, the members of the 

path set can be listed as follows:  

ac, abc, abbc, abbbc, abbbbc............. 

o Alternatively, the same set of paths can be denoted by :  

ac+abc+abbc+abbbc+abbbbc+........... 

o The + sign is understood to mean "or" between the two nodes of interest, paths ac, or abc, or 

abbc, and so on can be taken. 

o Any expression that consists of path names and "OR"s and which denotes a set of paths between 

two nodes is called a "Path Expression.". 

 PATH PRODUCTS:  

o The name of a path that consists of two successive path segments is conveniently expressed by 

the concatenation or Path Product of the segment names. 

o For example, if X and Y are defined as X=abcde,Y=fghij,then the path corresponding to X 

followed by Y is denoted by 

XY=abcdefghij 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
3



o Similarly,  

o YX=fghijabcde 

o aX=aabcde 

o Xa=abcdea 

XaX=abcdeaabcde 

o If X and Y represent sets of paths or path expressions, their product represents the set of paths 

that can be obtained by following every element of X by any element of Y in all possible ways. 

For example,  

o X = abc + def + ghi 

o Y = uvw + z            

       Then,  

XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz 

o If a link or segment name is repeated, that fact is denoted by an exponent. The exponent's value 

denotes the number of repetitions:  

o a
1
 = a; a

2
 = aa; a

3
 = aaa; a

n
 = aaaa . . . n times. 

Similarly, if  

X = abcde 

then  

X
1
 = abcde 

X
2
 = abcdeabcde = (abcde)

2
 

X
3
 = abcdeabcdeabcde = (abcde)

2
abcde 

= abcde(abcde)
2
 = (abcde)

3
 

o The path product is not commutative (that is XY!=YX). 

o The path product is Associative.  

RULE 1: A(BC)=(AB)C=ABC 

where A,B,C are path names, set of path names or path expressions.  

o The zeroth power of a link name, path product, or path expression is also needed for 

completeness. It is denoted by the numeral "1" and denotes the "path" whose length is zero - that 

is, the path that doesn't have any links.  

o a
0
 = 1 

o X
0
 = 1 

 PATH SUMS:  

o The "+" sign was used to denote the fact that path names were part of the same set of paths. 

o The "PATH SUM" denotes paths in parallel between nodes. 

o Links a and b in Figure 5.1a are parallel paths and are denoted by a + b. Similarly, links c and d 

are parallel paths between the next two nodes and are denoted by c + d.  

o The set of all paths between nodes 1 and 2 can be thought of as a set of parallel paths and denoted 

by eacf+eadf+ebcf+ebdf. 

o If X and Y are sets of paths that lie between the same pair of nodes, then X+Y denotes the 

UNION of those set of paths. For example, in Figure 5.2:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
4



 

Figure 5.2: Examples of path sums. 

The first set of parallel paths is denoted by X + Y + d and the second set by U + V + W + h + i + 

j. The set of all paths in this flowgraph is f(X + Y + d)g(U + V + W + h + i + j)k 

o The path is a set union operation, it is clearly Commutative and Associative.  

o RULE 2: X+Y=Y+X 

o RULE 3: (X+Y)+Z=X+(Y+Z)=X+Y+Z 

  

 DISTRIBUTIVE LAWS:  

o The product and sum operations are distributive, and the ordinary rules of multiplication apply; 

that is  

RULE 4: A(B+C)=AB+AC and (B+C)D=BD+CD 

o Applying these rules to the below Figure 5.1a yields  

o e(a+b)(c+d)f=e(ac+ad+bc+bd)f = eacf+eadf+ebcf+ebdf 

 ABSORPTION RULE:  

o If X and Y denote the same set of paths, then the union of these sets is unchanged; consequently,  

RULE 5: X+X=X (Absorption Rule) 

o If a set consists of paths names and a member of that set is added to it, the "new" name, which is 

already in that set of names, contributes nothing and can be ignored. 

o For example,  

o if X=a+aa+abc+abcd+def then 

    X+a = X+aa = X+abc = X+abcd = X+def = X 

It follows that any arbitrary sum of identical path expressions reduces to the same path 

expression. 

 LOOPS:  

o Loops can be understood as an infinite set of parallel paths. Say that the loop consists of a single 

link b. then the set of all paths through that loop point is b0+b1+b2+b3+b4+b5+..............  

 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
5



Figure 5.3: Examples of path loops. 

o This potentially infinite sum is denoted by b* for an individual link and by X* when X is a path 

expression.  

 

Figure 5.4: Another example of path loops. 

o The path expression for the above figure is denoted by the notation:  

ab*c=ac+abc+abbc+abbbc+................  

o Evidently,  

aa*=a*a=a+ and XX*=X*X=X+ 

o It is more convenient to denote the fact that a loop cannot be taken more than a certain, say n, 

number of times. 

o A bar is used under the exponent to denote the fact as follows:  

X
n
 = X

0
+X

1
+X

2
+X

3
+X

4
+X

5
+..................+X

n
 

 RULES 6 - 16:  

o The following rules can be derived from the previous rules:  

o RULE 6: X
n
 + X

m
 = X

n
 if n>m 

RULE 6: X
n
 + X

m
 = X

m
 if m>n 

RULE 7: X
n
X

m
 = X

n+m
 

RULE 8: X
n
X

*
 = X

*
X

n
 = X

*
 

RULE 9: X
n
X

+
 = X

+
X

n
 = X

+
 

RULE 10: X
*
X

+
 = X

+
X

*
 = X

+
 

RULE 11: 1 + 1 = 1 

RULE 12: 1X = X1 = X  

Following or preceding a set of paths by a path of zero length does not change the set. 

RULE 13: 1
n
 = 1

n
 = 1

*
 = 1

+
 = 1 

No matter how often you traverse a path of zero length,It is a path of zero length. 

RULE 14: 1
+
+1 = 1

*
=1 

The null set of paths is denoted by the numeral 0. it obeys the following rules: 

RULE 15: X+0=0+X=X 

RULE 16: 0X=X0=0 

If you block the paths of a graph for or aft by a graph that has no paths , there wont be any paths. 

         

REDUCTION PROCEDURE: 

 REDUCTION PROCEDURE ALGORITHM:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
6



o This section presents a reduction procedure for converting a flowgraph whose links are labeled 

with names into a path expression that denotes the set of all entry/exit paths in that flowgraph. 

The procedure is a node-by-node removal algorithm. 

o The steps in Reduction Algorithm are as follows:  

1. Combine all serial links by multiplying their path expressions. 

2. Combine all parallel links by adding their path expressions. 

3. Remove all self-loops (from any node to itself) by replacing them with a link of the form 

X*, where X is the path expression of the link in that loop.  

 

STEPS 4 - 8 ARE IN THE ALGORIHTM'S LOOP:  

4. Select any node for removal other than the initial or final node. Replace it with a set of 

equivalent links whose path expressions correspond to all the ways you can form a 

product of the set of inlinks with the set of outlinks of that node. 

5. Combine any remaining serial links by multiplying their path expressions. 

6. Combine all parallel links by adding their path expressions. 

7. Remove all self-loops as in step 3. 

8. Does the graph consist of a single link between the entry node and the exit node? If yes, 

then the path expression for that link is a path expression for the original flowgraph; 

otherwise, return to step 4. 

o A flowgraph can have many equivalent path expressions between a given pair of nodes; that is, 

there are many different ways to generate the set of all paths between two nodes without 

affecting the content of that set. 

o The appearance of the path expression depends, in general, on the order in which nodes are 

removed. 

 CROSS-TERM STEP (STEP 4):  

o The cross - term step is the fundamental step of the reduction algorithm. 

o It removes a node, thereby reducing the number of nodes by one. 

o Successive applications of this step eventually get you down to one entry and one exit node. The 

following diagram shows the situation at an arbitrary node that has been selected for removal:  

 

 

 

o From the above diagram, one can infer:  

o (a + b)(c + d + e) = ac + ad + + ae + bc + bd + be 

           

 LOOP REMOVAL OPERATIONS:  

o There are two ways of looking at the loop-removal operation:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
7



 

 

o In the first way, we remove the self-loop and then multiply all outgoing links by Z*. 

o In the second way, we split the node into two equivalent nodes, call them A and A' and put in a 

link between them whose path expression is Z*. Then we remove node A' using steps 4 and 5 to 

yield outgoing links whose path expressions are Z*X and Z*Y. 

 A REDUCTION PROCEDURE - EXAMPLE:  

o Let us see by applying this algorithm to the following graph where we remove several nodes in 

order; that is  

 

Figure 5.5: Example Flowgraph for demonstrating reduction procedure. 

o Remove node 10 by applying step 4 and combine by step 5 to yield  

 

o Remove node 9 by applying step4 and 5 to yield  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
8



 

o Remove node 7 by steps 4 and 5, as follows:  

 

o Remove node 8 by steps 4 and 5, to obtain:  

 

o PARALLEL TERM (STEP 6): 

Removal of node 8 above led to a pair of parallel links between nodes 4 and 5. combine them to 

create a path expression for an equivalent link whose path expression is c+gkh; that is  

 

o LOOP TERM (STEP 7): 

Removing node 4 leads to a loop term. The graph has now been replaced with the following 

equivalent simpler graph:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
9



 

 

 

o Continue the process by applying the loop-removal step as follows:  

 

o Removing node 5 produces:  

 

o Remove the loop at node 6 to yield:  

 

o Remove node 3 to yield:  

 

 

 

o Removing the loop and then node 6 result in the following expression:  

o a(bgjf)*b(c+gkh)d((ilhd)*imf(bjgf)*b(c+gkh)d)*(ilhd)*e 

o You can practice by applying the algorithm on the following flowgraphs and generate their 

respective path expressions:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
10



 

Figure 5.6: Some graphs and their path expressions. 

APPLICATIONS: 

 APPLICATIONS:  

o The purpose of the node removal algorithm is to present one very generalized concept- the path 

expression and way of getting it. 

o Every application follows this common pattern:  

1. Convert the program or graph into a path expression. 

2. Identify a property of interest and derive an appropriate set of "arithmetic" rules that 

characterizes the property. 

3. Replace the link names by the link weights for the property of interest. The path 

expression has now been converted to an expression in some algebra, such as ordinary 

algebra, regular expressions, or boolean algebra. This algebraic expression summarizes 

the property of interest over the set of all paths. 

4. Simplify or evaluate the resulting "algebraic" expression to answer the question you 

asked. 

 HOW MANY PATHS IN A FLOWGRAPH ?  

o The question is not simple. Here are some ways you could ask it:  

1. What is the maximum number of different paths possible?  

2. What is the fewest number of paths possible? 

3. How many different paths are there really? 

4. What is the average number of paths? 

o Determining the actual number of different paths is an inherently difficult problem because there 

could be unachievable paths resulting from correlated and dependent predicates. 

o If we know both of these numbers (maximum and minimum number of possible paths) we have a 

good idea of how complete our testing is. 

o Asking for "the average number of paths" is meaningless.  

 MAXIMUM PATH COUNT ARITHMETIC:  

o Label each link with a link weight that corresponds to the number of paths that link represents. 

o Also mark each loop with the maximum number of times that loop can be taken. If the answer is 

infinite, you might as well stop the analysis because it is clear that the maximum number of paths 

will be infinite. 

o There are three cases of interest: parallel links, serial links, and loops.  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
11



 

 

o This arithmetic is an ordinary algebra. The weight is the number of paths in each set. 

o EXAMPLE:  

 The following is a reasonably well-structured program.  

 

 

 

Each link represents a single link and consequently is given a weight of "1" to start. Lets 

say the outer loop will be taken exactly four times and inner Loop Can be taken zero or 

three times Its path expression, with a little work, is: 

Path expression: a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh 

 A: The flow graph should be annotated by replacing the link name with the maximum of 

paths through that link (1) and also note the number of times for looping.  

 B: Combine the first pair of parallel loops outside the loop and also the pair in the outer 

loop. 

 C: Multiply the things out and remove nodes to clear the clutter.  

 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
12



 For the Inner Loop:  

D:Calculate the total weight of inner loop, which can execute a min. of 0 times and max. 

of 3 times. So, it inner loop can be evaluated as follows:  

1
3
 = 1

0
 + 1

1
 + 1

2
 + 1

3
 = 1 + 1 + 1 + 1 = 4 

 E: Multiply the link weights inside the loop: 1 X 4 = 4 

 F: Evaluate the loop by multiplying the link wieghts: 2 X 4 = 8. 

 G: Simpifying the loop further results in the total maximum number of paths in the 

flowgraph: 

2 X 8
4
 X 2 = 32,768.  

 

 

 Alternatively, you could have substituted a "1" for each link in the path expression and then simplified, as 

follows:  

a(b+c)d{e(fi)*fgj(m+l)k}*e(fi)*fgh 

= 1(1 + 1)1(1(1 x 1)
3
1 x 1 x 1(1 + 1)1)

4
1(1 x 1)

3
1 x 1 x 1 

= 2(1
3
1 x (2))

4
1

3
 

= 2(4 x 2)
4
 x 4  

= 2 x 8
4
 x 4 = 32,768 

 This is the same result we got graphically. 

 Actually, the outer loop should be taken exactly four times. That doesn't mean it will be taken zero or four 

times. Consequently, there is a superfluous "4" on the outlink in the last step. Therefore the maximum number of 

different paths is 8192 rather than 32,768. 

 STRUCTURED FLOWGRAPH:  

 Structured code can be defined in several different ways that do not involve ad-hoc rules such as not using 

GOTOs. 

 A structured flowgraph is one that can be reduced to a single link by successive application of the 

transformations of Figure 5.7.  

 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
13



Figure 5.7: Structured Flowgraph Transformations. 

 The node-by-node reduction procedure can also be used as a test for structured code. 

 Flow graphs that DO NOT contain one or more of the graphs shown below (Figure 5.8) as subgraphs are 

structured.  

0. Jumping into loops 

1. Jumping out of loops 

2. Branching into decisions 

3. Branching out of decisions 

 

Figure 5.8: Un-structured sub-graphs. 

 LOWER PATH COUNT ARITHMETIC:  

 A lower bound on the number of paths in a routine can be approximated for structured flow graphs. 

 The arithmetic is as follows:  

 

 The values of the weights are the number of members in a set of paths. 

 EXAMPLE:  

 Applying the arithmetic to the earlier example gives us the identical steps unitl step 3 

(C) as below:  

 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
14



 

 

 From Step 4, the it would be different from the previous example:  

 

 If you observe the original graph, it takes at least two paths to cover and that it can be 

done in two paths. 

 If you have fewer paths in your test plan than this minimum you probably haven't 

covered. It's another check. 

 CALCULATING THE PROBABILITY:  

 Path selection should be biased toward the low - rather than the high-probability paths. 

 This raises an interesting question:  

What is the probability of being at a certain point in a routine? 

This question can be answered under suitable assumptions, primarily that all probabilities involved are 

independent, which is to say that all decisions are independent and uncorrelated. 

 We use the same algorithm as before : node-by-node removal of uninteresting nodes. 

 Weights, Notations and Arithmetic:  

 Probabilities can come into the act only at decisions (including decisions associated with 

loops). 

 Annotate each outlink with a weight equal to the probability of going in that direction. 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
15



 Evidently, the sum of the outlink probabilities must equal 1 

 For a simple loop, if the loop will be taken a mean of N times, the looping probability is 

N/(N + 1) and the probability of not looping is 1/(N + 1). 

 A link that is not part of a decision node has a probability of 1. 

 The arithmetic rules are those of ordinary arithmetic.  

 

 In this table, in case of a loop, PA is the probability of the link leaving the loop and PL is 

the probability of looping. 

 The rules are those of ordinary probability theory.  

1. If you can do something either from column A with a probability of PA or from 

column B with a probability PB, then the probability that you do either is PA + 

PB.  

2. For the series case, if you must do both things, and their probabilities are 

independent (as assumed), then the probability that you do both is the product 

of their probabilities. 

 For example, a loop node has a looping probability of PL and a probability of not 

looping of PA, which is obviously equal to I - PL.  

 

 

 Following the above rule, all we've done is replace the outgoing probability with 1 - so 

why the complicated rule? After a few steps in which you've removed nodes, combined 

parallel terms, removed loops and the like, you might find something like this:  

 

because PL + PA + PB + PC = 1, 1 - PL = PA + PB + PC, and  

 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
16



which is what we've postulated for any decision. In other words, division by 1 - PL 

renormalizes the outlink probabilities so that their sum equals unity after the loop is 

removed.  

 EXAMPLE:  

 Here is a complicated bit of logic. We want to know the probability associated with 

cases A, B, and C.  

 

 

 Let us do this in three parts, starting with case A. Note that the sum of the probabilities 

at each decision node is equal to 1. Start by throwing away anything that isn't on the 

way to case A, and then apply the reduction procedure. To avoid clutter, we usually 

leave out probabilities equal to 1.  

CASE A:  

 

 

 

 Case B is simpler:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
17



 

 

 Case C is similar and should yield a probability of 1 - 0.125 - 0.158 = 0.717:  

 

 

 This checks. It's a good idea when doing this sort of thing to calculate all the 

probabilities and to verify that the sum of the routine's exit probabilities does equal 1. 

 If it doesn't, then you've made calculation error or, more likely, you've left out some 

branching probability. 

 How about path probabilities? That's easy. Just trace the path of interest and multiply the 

probabilities as you go. 

 Alternatively, write down the path name and do the indicated arithmetic operation. 

 Say that a path consisted of links a, b, c, d, e, and the associated probabilities were .2, .5, 

1., .01, and I respectively. Path abcbcbcdeabddea would have a probability of 5 x 10
-10

.  

 Long paths are usually improbable. 

 MEAN PROCESSING TIME OF A ROUTINE:  

 Given the execution time of all statements or instructions for every link in a flowgraph and the probability 

for each direction for all decisions are to find the mean processing time for the routine as a whole. 

 The model has two weights associated with every link: the processing time for that link, denoted by T, and 

the probability of that link P. 

 The arithmetic rules for calculating the mean time:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
18



 

 EXAMPLE: 

0. Start with the original flow graph annotated with probabilities and processing time.  

 

 

1. Combine the parallel links of the outer loop. The result is just the mean of the 

processing times for the links because there aren't any other links leaving the first node. 

Also combine the pair of links at the beginning of the flowgraph..  

 

2. Combine as many serial links as you can.  

 

3. Use the cross-term step to eliminate a node and to create the inner self - loop.  

 

 

4. Finally, you can get the mean processing time, by using the arithmetic rules as follows:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
19



 

 PUSH/POP, GET/RETURN: 

 This model can be used to answer several different questions that can turn up in debugging.  

 It can also help decide which test cases to design.  

 The question is:  

Given a pair of complementary operations such as PUSH (the stack) and POP (the stack), considering the set 

of all possible paths through the routine, what is the net effect of the routine? PUSH or POP? How many 

times? Under what conditions? 

 Here are some other examples of complementary operations to which this model applies:  

 GET/RETURN a resource block. 

 OPEN/CLOSE a file. 

START/STOP a device or process. 

 EXAMPLE 1 (PUSH / POP): 

 Here is the Push/Pop Arithmetic:  

 

 The numeral 1 is used to indicate that nothing of interest (neither PUSH nor POP) 

occurs on a given link. 

 "H" denotes PUSH and "P" denotes POP. The operations are commutative, associative, 

and distributive.  

 

 Consider the following flowgraph:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
20



 

P(P + 1)1{P(HH)
n1

HP1(P + H)1}
n2

P(HH)
n1

HPH 

 Simplifying by using the arithmetic tables,  

 =(P
2
 + P){P(HH)

n1
(P + H)}

n1
(HH)

n1
 

 =(P
2
 + P){H

2n1
(P

2
 + 1)}

n2
H

2n1
 

 Below Table 5.9 shows several combinations of values for the two looping terms - M1 is 

the number of times the inner loop will be taken and M2 the number of times the outer 

loop will be taken.  

 

 

Figure 5.9: Result of the PUSH / POP Graph Analysis. 

 These expressions state that the stack will be popped only if the inner loop is not taken. 

 The stack will be left alone only if the inner loop is iterated once, but it may also be 

pushed. 

 For all other values of the inner loop, the stack will only be pushed. 

 EXAMPLE 2 (GET / RETURN): 

 Exactly the same arithmetic tables used for previous example are used for GET / 

RETURN a buffer block or resource, or, in fact, for any pair of complementary 

operations in which the total number of operations in either direction is cumulative. 

 The arithmetic tables for GET/RETURN are:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
21



 

 

"G" denotes GET and "R" denotes RETURN.  

 Consider the following flowgraph:  

 

 G(G + R)G(GR)*GGR*R 

= G(G + R)G
3
R*R 

= (G + R)G
3
R* 

= (G
4
 + G

2
)R* 

 This expression specifies the conditions under which the resources will be balanced on 

leaving the routine. 

 If the upper branch is taken at the first decision, the second loop must be taken four 

times. 

 If the lower branch is taken at the first decision, the second loop must be taken twice. 

 For any other values, the routine will not balance. Therefore, the first loop does not have 

to be instrumented to verify this behavior because its impact should be nil. 

 LIMITATIONS AND SOLUTIONS:  

 The main limitation to these applications is the problem of unachievable paths. 

 The node-by-node reduction procedure, and most graph-theory-based algorithms work well when all paths 

are possible, but may provide misleading results when some paths are unachievable.  

 The approach to handling unachievable paths (for any application) is to partition the graph into subgraphs 

so that all paths in each of the subgraphs are achievable. 

 The resulting subgraphs may overlap, because one path may be common to several different subgraphs. 

 Each predicate's truth-functional value potentially splits the graph into two subgraphs. For n predicates, 

there could be as many as 2
n
 subgraphs. 

REGULAR EXPRESSIONS AND FLOW ANOMALY DETECTION: 

 THE PROBLEM:  

o The generic flow-anomaly detection problem (note: not just data-flow anomalies, but any flow 

anomaly) is that of looking for a specific sequence of options considering all possible paths 

through a routine. 

o Let the operations be SET and RESET, denoted by s and r respectively, and we want to know if 

there is a SET followed immediately a SET or a RESET followed immediately by a RESET (an 

ss or an rr sequence). 

o Some more application examples:  

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
22



1. A file can be opened (o), closed (c), read (r), or written (w). If the file is read or written 

to after it's been closed, the sequence is nonsensical. Therefore, cr and cw are 

anomalous. Similarly, if the file is read before it's been written, just after opening, we 

may have a bug. Therefore, or is also anomalous. Furthermore, oo and cc, though not 

actual bugs, are a waste of time and therefore should also be examined. 

2. A tape transport can do a rewind (d), fast-forward (f), read (r), write (w), stop (p), and 

skip (k). There are rules concerning the use of the transport; for example, you cannot go 

from rewind to fast-forward without an intervening stop or from rewind or fast-forward 

to read or write without an intervening stop. The following sequences are anomalous: df, 

dr, dw, fd, and fr. Does the flowgraph lead to anomalous sequences on any path? If so, 

what sequences and under what circumstances? 

3. The data-flow anomalies discussed in Unit 4 requires us to detect the dd, dk, kk, and ku 

sequences. Are there paths with anomalous data flows? 

 THE METHOD:  

o Annotate each link in the graph with the appropriate operator or the null operator 1.  

o Simplify things to the extent possible, using the fact that a + a = a and 12 = 1. 

o You now have a regular expression that denotes all the possible sequences of operators in that 

graph. You can now examine that regular expression for the sequences of interest. 

o EXAMPLE: Let A, B, C, be nonempty sets of character sequences whose smallest string is at 

least one character long. Let T be a two-character string of characters. Then if T is a substring of 

(i.e., if T appears within) AB
n
C, then T will appear in AB

2
C. (HUANG's Theorem) 

o As an example, let  

A = pp 

B = srr 

C = rp 

T = ss 

 

The theorem states that ss will appear in pp(srr)
n
rp if it appears in pp(srr)

2
rp.  

o However, let 

A = p + pp + ps 

B = psr + ps(r + ps) 

C = rp 

T = P
4
 

Is it obvious that there is a p
4
 sequence in AB

n
C? The theorem states that we have only to look at  

(p + pp + ps)[psr + ps(r + ps)]
2
rp 

Multiplying out the expression and simplifying shows that there is no p
4
 sequence.  

o Incidentally, the above observation is an informal proof of the wisdom of looping twice discussed 

in Unit 2. Because data-flow anomalies are represented by two-character sequences, it follows 

the above theorem that looping twice is what you need to do to find such anomalies. 

 LIMITATIONS:  

o Huang's theorem can be easily generalized to cover sequences of greater length than two 

characters. Beyond three characters, though, things get complex and this method has probably 

reached its utilitarian limit for manual application. 

o There are some nice theorems for finding sequences that occur at the beginnings and ends of 

strings but no nice algorithms for finding strings buried in an expression. 

o Static flow analysis methods can't determine whether a path is or is not achievable. Unless the 

flow analysis includes symbolic execution or similar techniques, the impact of unachievable 

paths will not be included in the analysis. 

o The flow-anomaly application, for example, doesn't tell us that there will be a flow anomaly - it 

tells us that if the path is achievable, then there will be a flow anomaly. Such analytical problems 

go away, of course, if you take the trouble to design routines for which all paths are achievable. 

Smartworld.asia Specworld.in

Smartzworld.com jntuworldupdates.org
23




