

MODULE-II

Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain recursive rules as
given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.

Basis :

i) is a RE

ii) is a RE

iii) , a is RE.

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

If and are REs over, then so are

i)

ii)

iii)

iv)

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a finite no of
applications of the recursive step (given in 2).

Example : Let = { 0,1,2 }. Then (0+21)*(1+ F) is a RE, because we can construct this expression by
applying the above rules as given in the following step.

Steps RE Constructed Rule Used

1 1 Rule 1(iii)

2 Rule 1(i)

3 1+ Rule 2(i) & Results of Step 1, 2

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

4 (1+) Rule 2(iv) & Step 3

5 2 1(iii)

6 1 1(iii)

7 21 2(ii), 5, 6

8 0 1(iii)

9 0+21 2(i), 7, 8

10 (0+21) 2(iv), 9

11 (0+21)* 2(iii), 10

12 (0+21)* 2(ii), 4, 11
Language described by REs : Each describes a language (or a language is associated with every RE). We
will see later that REs are used to attribute regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can define the
language L(r) associated with (or described by) a REs as follows.

1. is the RE describing the empty language i.e. L() = .

2. is a RE describing the language { } i.e. L() = { } .

3. , a is a RE denoting the language {a} i.e . L(a) = {a} .

4. If and are REs denoting language L() and L() respectively, then

i) is a regular expression denoting the language L() = L() ∪ L()

ii) is a regular expression denoting the language L()=L() L()

iii) is a regular expression denoting the language

iv) () is a regular expression denoting the language L(()) = L()

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is

L(0*(0+1)) = L(0*) L(0+1)by 4(ii)

= L(0)*L(0) ∪ L(1)

= { , 0,00,000,........} {0} {1}

= { , 0,00,000,........} {0,1}

= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............}

Precedence Rule

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Consider the RE ab + c. The language described by the RE can be thought of either L(a)L(b+c) or
L(ab) L(c) as provided by the rules (of languages described by REs) given already. But these two
represents two different languages lending to ambiguity. To remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other algebras mod in
mathematics.

For REs, the order of precedence for the operators is as follows:

i) The star operator precedes concatenation and concatenation precedes union (+) operator.

ii) It is also important to note that concatenation & union (+) operators are associative and union operation is
commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) L(c) i.e. it should be
grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the language
represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language L(a)(L(b))* L(b)

Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over {0,1} which are
either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even number of 0's

followed by an odd number of 1's i.e.

Note : The notation is used to represent the RE rr*. Similarly, represents the RE rr, denotes r,
and so on.

An arbitrary string over = {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. L(r)={ has at least one pair of consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what goes before is
completely arbitrary. Considering these observations we can write the REs as (0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE (0+1)*11(0+1)*+(0+1)*00(0+1)*
represents the set of string over {0,1} that contains the substring 11 or 00.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of strings over {0,1}
that contains exactly two 1's. The presence of two 1's in the RE and any no of 0's before, between and after the
1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before, between, and after is
completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But following two REs also represent
the same language, each ensuring presence of least two 1's somewhere in the string

i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

L(r) = { has no pair of consecutive 1's}

Solution : Though it looks similar to ex ……., it is harder to construct to construct. We observer that, whenever
a 1 occurs, it must be immediately followed by a 0. This substring may be preceded & followed by any no of
0's. So the final RE must be a repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the
RE is (0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not accounted for. Taking
these observations into consideration, the final RE is r = (0*100*)(1+)+0*(1+).

Alternative Solution :
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r = (0+10)*(1+).This
is a shorter expression but represents the same language.

Regular Expression:

FA to regular expressions:

FA to RE (REs for Regular Languages) :

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA M, then there
is a RE r such that L = L(r).

Proof : We need to construct a RE r such that . Since M is a DFA, it has a finite
no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [Note : if the n states of M were
denoted by some other symbols, we can always rename those to indicate as 1, 2, 3,..., n]. The required RE is
constructed inductively.

Notations : is a RE denoting the language which is the set of all strings w such that w is the label of a

path from state i to state j in M, and that path has no intermediate state whose number is
greater then k. (i & j (begining and end pts) are not considered to be "intermediate" so i and /or j can be

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

greater than k)

We now construct inductively, for all i, j Q starting at k = 0 and finally reaching k = n.

Basis : k = 0, i.e. the paths must not have any intermediate state (since all states are numbered 1 or
above). There are only two possible paths meeting the above condition :

1. A direct transition from state i to state j.

o = a if then is a transition from state i to state j on symbol the single symbol a.

o = if there are multiple transitions from state i to state j on symbols

.

o = f if there is no transition at all from state i to state j.
2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0 (i.e. the RE

denoting the string) and all self loops. By simply adding Î to various cases above we get the
corresponding REs i.e.

o = + a if there is a self loop on symbol a in state i .

o = + if there are self loops in state i as multiple symbols

.

o = if there is no self loop on state i.

Induction :

Assume that there exists a path from state i to state j such that there is no intermediate state whose number is

greater than k. The corresponding Re for the label of the path is .
There are only two possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states are less than

k. So, the label of the path from state i to state j is tha language described by the RE .
2. The path goes through the state k at least once. The path may go from i to j and k may appear more

than once. We can break the into pieces as shown in the figure 7.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Figure 7

1. The first part from the state i to the state k which is the first recurence. In this path, all intermediate

states are less than k and it starts at iand ends at k. So the RE denotes the language of the
label of path.

2. The last part from the last occurence of the state k in the path to state j. In this path also, no

intermediate state is numbered greater than k. Hence the RE denoting the language of the label
of the path.

3. In the middle, for the first occurence of k to the last occurence of k , represents a loop which may be
taken zero times, once or any no of times. And all states between two consecutive k's are numbered
less than k.

Hence the label of the path of the part is denoted by the RE .The label of the path from state i to state

j is the concatenation of these 3 parts which is

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by the following RE

We can construct for all i, j {1,2,..., n} in increasing order of k starting with the basis k = 0 upto k = n

since depends only on expressions with a small superscript (and hence will be available). WLOG, assume

that state 1 is the start state and are the m final states where ji {1, 2, ... , n }, and

. According to the convention used, the language of the automatacan be denoted by the RE

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Since is the set of all strings that starts at start state 1 and finishes at final state following the transition
of the FA with any value of the intermediate state (1, 2, ... , n) and hence accepted by the automata.

Regular Grammar:

A grammar is right-linear if each production has one of the following three forms:

• A cB ,
• A c,
• A

Where A, B (with A = B allowed) and . A grammar G is left-linear if each production has once of
the following three forms.

A Bc , A c, A

A right or left-linear grammar is called a regular grammar.

Regular grammar and Finite Automata are equivalent as stated in the following theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two lemmas to prove the
above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar.

Proof : Let be a DFA that accepts L.

Let and .

We construct the right-linear grammar by letting

N = Q , and

[Note: If , then]

Let . For M to accept w, there must be a sequence of states such that

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

and

By construction, the grammar G will have one production for each of the above transitions. Therefore, we have
the corresponding derivation.

Hence w L(g).

Conversely, if , then the derivation of w in G must have the form as given above. But,
then the construction of G from M implies that

, where , completing the proof.

Lemma 2 : Let be a right-linear grammar. Then L(G) is a regular language.

Proof: To prove it, we construct a FA M from G to accept the same language.

is constructed as follows:

(is a special sumbol not in N)

,

For any and and is defined as

if

and , if .

We now show that this construction works.

Let . Then there is a derivation of w in G of the form

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

By contradiction of M, there must be a sequence of transitions

implying that i.e. w is accepted by M.

Conversely, if is accepted by M, then because is the only accepting state of M, the
transitions causing w to be accepted by M will be of the form given above. These transitions corresponds to a

derivationof w in the grammar G. Hence , completing the proof of the lemma.

Given any left-linear grammar G with production of the form , we can construct from it a right-

linear grammar by replacing every production of G of the form with

It is easy to prove that . Since is right-linear, is regular. But then so are

i.e. because regular languages are closed under reversal.

Putting the two lemmas and the discussions in the above paragraph together we get the proof of the theorem-

A language L is regular iff it has a regular grammar
Example : Consider the grammar

It is easy to see that G generates the language denoted by the regular expression (01)*0.
The construction of lemma 2 for this grammar produces the follwoing FA.
This FA accepts exactly (01)*1.

Decisions Algorithms for CFL

In this section, we examine some questions about CFLs we can answer. A CFL may be represented using a
CFG or PDA. But an algorithm that uses one representation can be made to work for the others, since we can
construct one from the other.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Testing Emptiness :

Theorem : There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the construction described

in the context of elimination of useless symbols, whether the start symbol is useless. If so, then ;
otherwise not.

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine whether ?

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the PDA can grow its
stack indefinitely on input, and the process may never terminate, even if the PDA is deterministic.

So, we assume that a CFG is given such that L = L(G).

Let us first present a simple but inefficient algorithm.

Convert G to in CNF generating . If the input string , then we need to

determine whether and it can easily be done using the technique given in the context of elimination of

-production. If , then iff . Consider a derivation under a grammar in CNF. At
every step, a production in CNF in used, and hence it adds exactly one terminal symbol to the sentential form.

Hence, if the length of the input string x is n, then it takes exactly n steps to derive x (provided x is in).

Let the maximum number of productions for any nonterminal in is K. So at every step in derivation, there

are atmost k choices. We may try out all these choices, systematically., to derive the string x in . Since

there are atmost i.e. choices. This algorithms is of exponential time complexity. We now present an
efficient (polynomial time) membership algorithm.

Pumping Lemma:

Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain languages which are
non regular i.e. cannot be recognized by any FA

Consider the language

In order to accept is language, we find that, an automaton seems to need to remember when passing the
center point between a's and b's how many a's it has seen so far. Because it would have to compare that with
the number of b's to either accept (when the two numbers are same) or reject (when they are not same) the
input string.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

But the number of a's is not limited and may be much larger than the number of states since the string may be
arbitrarily long. So, the amount of information the automaton need to remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The fact that FA

s have finite memory imposes some limitations on the structure of the languages recognized. Inductively, we
can say that a language is regular only if in processing any string in this language, the information that has to

be remembered at any point is strictly limited. The argument given above to show that is non regular is

informal. We now present a formal method for showing that certain languages such as are non regular

Properties of CFL’s

Closure properties of CFL:

We consider some important closure properties of CFLs.

Theorem : If and are CFLs then so is

Proof : Let and be CFGs generating. Without loss of generality,

we can assume that . Let is a nonterminal not in or . We construct the grammar

from and , where

,

We now show that

Thus proving the theorem.

Let . Then . All productions applied in their derivation are also in . Hence i.e.

Similarly, if , then

Thus .

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Conversely, let . Then and the first step in this derivation must be either or

. Considering the former case, we have

Since and are disjoint, the derivation must use the productions of only (which are also in

) Since is the start symbol of . Hence, giving .

Using similar reasoning, in the latter case, we get . Thus .

So, , as claimed

Theorem : If and are CFLs, then so is .

Proof : Let and be the CFGs generating and respectively.

Again, we assume that and are disjoint, and is a nonterminal not in or . we construct the CFG

from and , where

We claim that

To prove it, we first assume that and . Then and . We can derive the string xy in

as shown below.

since and . Hence .

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

For the converse, let . Then the derivation of w in will be of the form

i.e. the first step in the derivation must see the rule . Again, since and are

disjoint and and , some string x will be generated from using productions in (which are

also in) and such that .

Thus

Hence and .

This means that w can be divided into two parts x, y such that and . Thus .This
completes the proof

Theorem : If L is a CFL, then so is .

Proof : Let be the CFG generating L. Let us construct the CFG from G

where .

We now prove that , which prove the theorem.

can generate in one step by using the production since , can generate any string in L.

Let for any n >1 we can write where for . w can be generated by

using following steps.

First (n-1)-steps uses the production S SS producing the sentential form of n numbers of S 's. The

nonterminal S in the i-th position then generates using production in P (which are also in)

It is also easy to see that G can generate the empty string, any string in L and any string for n >1 and
none other.

Hence

Theorem : CFLs are not closed under intersection

Proof : We prove it by giving a counter example. Consider the language .The following
CFG generates L1 and hence a CFL

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

The nonterminal X generates strings of the form and C generates strings of the form , .

These are the only types of strings generated by X and C. Hence, S generates .

 Using similar reasoning, it can be shown that the following grammar and hence it is
also a CFL.

But, and is already shown to be not context-free.

Hence proof.

Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce, CFL's are also closed

under union, the language , where and are CFL's must be CFL. But by DeMorgan's law

This contradicts the already proved fact that CFL's are not closed under intersection.

But it can be shown that the CFL's are closed under intersection with a regular set.

Theorem : If L is a CFL and R is a regular language, then is a CFL.

Proof : Let be a PDA for L and let be a DFA for R.

We construct a PDA M from P and D as follows

where is defined as

contains iff

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

and contains

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff both P and D
accepts. That means, we want to show that

We apply induction on n, the number of moves, to show that

iff

and

Basic Case is n=0. Hence , and . For this case it is trivially true

Inductive hypothesis : Assume that the statement is true for n -1.

Inductive Step : Let w = xa and

Let

By inductive hypothesis, and

From the definition of and considering the n-th move of the PDA M above, we have

and

Hence and

If and , then and we got that if M accepts w, then both P and D accepts it.

We can show that converse, in a similar way. Hence is a CFL (since it is accepted by a PDA M)
This property is useful in showing that certain languages are not context-free.
Example : Consider the language

Intersecting L with the regular set , we get

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Which is already known to be not context-free. Hence L is not context-free

Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is

Proof : Let the CFG generates L. We construct a CFG where

. We now show that , thus proving the theorem.
We need to prove that

iff .
The proof is by induction on n, the number of steps taken by the derivation. We assume, for simplicity (and of

course without loss of generality), that G and hence are in CNF.

The basis is n=1 in which case it is trivial. Because must be either or BC with .

Hence iff

Assume that it is true for (n-1)-steps. Let . Then the first step must apply a rule of the form

and it gives

where and

By constructing of G',
Hence

The converse case is exactly similar
Substitution :

, let be a language (over any alphabet). This defines a function S, called substitution, on which is

denoted as - for all
This definition of substitution can be extended further to apply strings and langauge as well.

If , where , is a string in , then

.
Similarly, for any language L,

The following theorem shows that CFLs are closed under substitution.

Thereom : Let is a CFL, and s is a substitution on such that is a CFL for all , thus
s(L) is a CFL

Proof : Let L = L(G) for a CFG and for every , for some

. Without loss of generality, assume that the sets of nonterminals N and 's are
disjoint.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Now, we construct a grammar , generating s(L), from G and 's as follows :

•

•

•
• consists of

1. and
2. The production of P but with each terminal a in the right hand side of a production replaced by

everywhere.

We now want to prove that this construction works i.e. iff .

If Part : Let then according to the definition there is some string and

for such that

We will show that .

From the construction of , we find that, there is a derivation corresponding to the string

(since contains all productions of G but every ai replaced with in the RHS of any
production).

Every is the start symbol of and all productions of are also included in .
Hence

Therefore,

(Only-if Part) Let . Then there must be a derivative as follows :

(using the production of G include in as modified by (step 2) of the construction of .)

Each () can only generate a string , since each 's and N are disjoin. Therefore,
we get

since

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

since

The string is formed by substituting strings for each and hence .

Theorem : CFL's are closed under homomorphism

Proof : Let be a CFL, and h is a homomorphism on i.e for some alphabets . consider

the following substitution S:Replace each symbol by the language consisting of the only string h(a), i.e.

for all . Then, it is clear that, h(L) = s(L). Hence, CFL's being closed under substitution
must also be closed under homomorphism.

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Grammar

A grammar is a mechanism used for describing languages. This is one of the most simple but yet powerful
mechanism. There are other notions to do the same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of words constructed from these
symbols, and a set of rules using which we can group the words to construct meaningful sentences. The
grammar for English tells us what are the words in it and the rules to construct sentences. It also tells us
whether a particular sentence is well-formed (as per the grammar) or not. But even if one follows the rules of
the english grammar it may lead to some sentences which are not meaningful at all, because of impreciseness
and ambiguities involved in the language. In english grammar we use many other higher level constructs like
noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can be defined as

< sentence > < noun-phrase > < predicate >

meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate".

Some more rules are as follows:

< noun-phrase > < article >< noun >

< predicate > < verb >

with similar kind of interpretation given above.

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>; and eats, runs,
swims, walks, are associated with <verb>, then we can construct the sentence- a cow runs, the boy eats, an
pen walks- using the above rules. Even though all sentences are well-formed, the last one is not meaningful.
We observe that we start with the higher level construct <sentence> and then reduce it to <noun-phrase>,
<article>, <noun>, <verb> successively, eventually leading to a group of words associated with these
constructs.

These concepts are generalized in formal language leading to formal grammars. The word 'formal' here refers
to the fact that the specified rules for the language are explicitly stated in terms of what strings or symbols can
occur. There can be no ambiguity in it.

Formal definitions of a Grammar

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

A grammar G is defined as a quadruple.

N is a non-empty finite set of non-terminals or variables,

is a non-empty finite set of terminal symbols such that

, is a special non-terminal (or variable) called the start symbol, and is a
finite set of production rules.

The binary relation defined by the set of production rules is denoted by , i.e. iff .

In other words, P is a finite set of production rules of the form , where and

Production rules:

The production rules specify how the grammar transforms one string to another. Given a string , we say

that the production rule is applicable to this string, since it is possible to use the rule to rewrite

the (in) to obtaining a new string . We say that derives and is denoted as

Successive strings are dervied by applying the productions rules of the grammar in any arbitrary order. A
particular rule can be used if it is applicable, and it can be applied as many times as described.

We write if the string can be derived from the string in zero or more steps; if can be
derived from in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate many strings of terminal
symbols starting with the special start symbol, S, of the grammar. The set of all such terminal strings is called
the language generated (or defined) by the grammar.

Formaly, for a given grammar the language generated by G is

That is iff .

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

If , we must have for some , , denoted as a

derivation sequence of w, The strings are denoted as sentential forms of the
derivation.

Example : Consider the grammar , where N = {S}, ={a, b} and P is the set of the following
production rules

{ S ab, S aSb}

Some terminal strings generated by this grammar together with their derivation is given below.

S ab

S aSb aabb

S aSb aaSbb aaabbb

It is easy to prove that the language generated by this grammar is

By using the first production, it generates the string ab (for i =1).

To generate any other string, it needs to start with the production S aSb and then the non-terminal S in the
RHS can be replaced either by ab (in which we get the string aabb) or the same production S aSb can be
used one or more times. Every time it adds an 'a' to the left and a 'b' to the right of S, thus giving the sentential

form . When the non-terminal is replaced by ab (which is then only possibility for generating a

terminal string) we get a terminal string of the form .

There is no general rule for finding a grammar for a given language. For many languages we can devise
grammars and there are many languages for which we cannot find any grammar.

Example: Find a grammar for the language .

It is possible to find a grammar for L by modifying the previous grammar since we need to generate an extra b

at the end of the string . We can do this by adding a production S Bb where the non-terminal B

generates as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

where, N = { S, B }, P = { S Bb, B ab, B aBb }

Parse Trees:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Construction of a Parse tree:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Yield of a Parse tree:

Ambiguity in languages and grammars:

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

Smartzworld.com Smartworld.asia

jntuworldupdates.org Specworld.in

